[go: up one dir, main page]

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, an approximately finite-dimensional (AF) C*-algebra is a C*-algebra that is the inductive limit of a sequence of finite-dimensional C*-algebras. Approximate finite-dimensionality was first defined and described combinatorially by Ola Bratteli. Later, George A. Elliott gave a complete classification of AF algebras using the K0 functor whose range consists of ordered abelian groups with sufficiently nice order structure. The counterpart of simple AF C*-algebras in the von Neumann algebra world are the hyperfinite factors, which were classified by Connes and Haagerup.

Property Value
dbo:abstract
  • In mathematics, an approximately finite-dimensional (AF) C*-algebra is a C*-algebra that is the inductive limit of a sequence of finite-dimensional C*-algebras. Approximate finite-dimensionality was first defined and described combinatorially by Ola Bratteli. Later, George A. Elliott gave a complete classification of AF algebras using the K0 functor whose range consists of ordered abelian groups with sufficiently nice order structure. The classification theorem for AF-algebras serves as a prototype for classification results for larger classes of separable simple stably finite C*-algebras. Its proof divides into two parts. The invariant here is K0 with its natural order structure; this is a functor. First, one proves existence: a homomorphism between invariants must lift to a *-homomorphism of algebras. Second, one shows uniqueness: the lift must be unique up to approximate unitary equivalence. Classification then follows from what is known as the intertwining argument. For unital AF algebras, both existence and uniqueness follow from the fact the Murray-von Neumann semigroup of projections in an AF algebra is cancellative. The counterpart of simple AF C*-algebras in the von Neumann algebra world are the hyperfinite factors, which were classified by Connes and Haagerup. In the context of noncommutative geometry and topology, AF C*-algebras are noncommutative generalizations of C0(X), where X is a totally disconnected metrizable space. (en)
  • AF-C*-Algebren, oder kürzer AF-Algebren, bilden eine im mathematischen Teilgebiet der Funktionalanalysis betrachtete Klasse von C*-Algebren, die sich aus endlichdimensionalen C*-Algebren aufbauen lassen, AF steht für approximately finite (fast endlich). Diese C*-Algebren lassen sich mittels K-Theorie zu bestimmten Gruppen in Beziehung setzen und auf diese Weise vollständig beschreiben. (de)
  • Algebra AF (od ang. approximately finite-dimensional) – C*-algebra A zawierająca wstępujący ciąg skończenie wymiarowych pod-C*-algebr (Bn) (tj. Bn ⊆ Bn + 1 dla każdej liczby naturalnej n), których suma jest gęsta w A, tzn. Intuicyjnie, AF algebry to C*-algebry, które lokalnie wyglądają jak skończenie wymiarowe C*-algebry. Algebry AF są ważną klasą C*-algebr ze względu na fakt, że są klasyfikowalne przez . (pl)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 17936142 (xsd:integer)
dbo:wikiPageLength
  • 23387 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1075185720 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • p/a110420 (en)
dbp:title
  • AF-algebra (en)
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdfs:comment
  • AF-C*-Algebren, oder kürzer AF-Algebren, bilden eine im mathematischen Teilgebiet der Funktionalanalysis betrachtete Klasse von C*-Algebren, die sich aus endlichdimensionalen C*-Algebren aufbauen lassen, AF steht für approximately finite (fast endlich). Diese C*-Algebren lassen sich mittels K-Theorie zu bestimmten Gruppen in Beziehung setzen und auf diese Weise vollständig beschreiben. (de)
  • Algebra AF (od ang. approximately finite-dimensional) – C*-algebra A zawierająca wstępujący ciąg skończenie wymiarowych pod-C*-algebr (Bn) (tj. Bn ⊆ Bn + 1 dla każdej liczby naturalnej n), których suma jest gęsta w A, tzn. Intuicyjnie, AF algebry to C*-algebry, które lokalnie wyglądają jak skończenie wymiarowe C*-algebry. Algebry AF są ważną klasą C*-algebr ze względu na fakt, że są klasyfikowalne przez . (pl)
  • In mathematics, an approximately finite-dimensional (AF) C*-algebra is a C*-algebra that is the inductive limit of a sequence of finite-dimensional C*-algebras. Approximate finite-dimensionality was first defined and described combinatorially by Ola Bratteli. Later, George A. Elliott gave a complete classification of AF algebras using the K0 functor whose range consists of ordered abelian groups with sufficiently nice order structure. The counterpart of simple AF C*-algebras in the von Neumann algebra world are the hyperfinite factors, which were classified by Connes and Haagerup. (en)
rdfs:label
  • AF-C*-Algebra (de)
  • Approximately finite-dimensional C*-algebra (en)
  • Algebra AF (pl)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License