[go: up one dir, main page]

login
A047207
Numbers that are congruent to {0, 1, 3, 4} mod 5.
16
0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84
OFFSET
1,3
COMMENTS
Numbers not ending in 2 or 7. - Bruno Berselli, Oct 30 2017
FORMULA
a(n) = floor((5*n-3)/4). - Gary Detlefs, Mar 06 2010
G.f.: x^2*(1 + 2*x + x^2 + x^3) / ( (1 + x)*(x^2 + 1)*(x - 1)^2 ). - R. J. Mathar, Oct 08 2011
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=3, b(k)=5*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011
From Wesley Ivan Hurt, May 30 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (10*n-9-i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n)/8, where i=sqrt(-1).
a(2*k) = A047209(k), a(2*k-1) = A047218(k). (End)
E.g.f.: (4 - sin(x) + cos(x) + (5*x - 4)*sinh(x) + 5*(x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 30 2016
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + 3*sqrt(5)*log(phi)/10 + sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
MAPLE
seq(floor((5*n-3)/4), n=1..57); # Gary Detlefs, Mar 06 2010
MATHEMATICA
Flatten[Table[5*n + {0, 1, 3, 4}, {n, 0, 20}]] (* T. D. Noe, Nov 12 2013 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 3, 4, 5}, 100] (* Harvey P. Dale, Jan 31 2022 *)
PROG
(PARI) forstep(n=0, 99, [1, 2, 1, 1], print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
(Magma) [n : n in [0..100] | n mod 5 in [0, 1, 3, 4]]; // Wesley Ivan Hurt, May 30 2016
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved