[go: up one dir, main page]

login
A047206
Numbers that are congruent to {1, 3, 4} mod 5.
24
1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19, 21, 23, 24, 26, 28, 29, 31, 33, 34, 36, 38, 39, 41, 43, 44, 46, 48, 49, 51, 53, 54, 56, 58, 59, 61, 63, 64, 66, 68, 69, 71, 73, 74, 76, 78, 79, 81, 83, 84, 86, 88, 89, 91, 93, 94, 96, 98, 99, 101, 103, 104, 106, 108
OFFSET
1,2
FORMULA
G.f.: x*(1+2*x+x^2+x^3)/((1-x)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 1+(5*n)/3-(i*sqrt(3) * (-1/2+(i*sqrt(3))/2)^n)/9+(i*sqrt(3)* (-1/2-(i*sqrt(3))/2)^n)/9. - _Stephen Crowley_, Feb 11 2007
a(n) = floor((5*n-1)/3). - _Gary Detlefs_, May 14 2011
From _Wesley Ivan Hurt_, Jun 14 2016: (Start)
a(n) = (15*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 5k-1, a(3k-1) = 5k-2, a(3k-2) = 5k-4. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt((5-sqrt(5))/2)*Pi/5 + log(phi)/sqrt(5) - log(2)/5, where phi is the golden ratio (A001622). - _Amiram Eldar_, Apr 16 2023
E.g.f.: (9 + 3*exp(x)*(5*x - 2) - exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)))/9. - _Stefano Spezia_, Jun 22 2024
MAPLE
A047206:=n->(15*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9: seq(A047206(n), n=1..100); # _Wesley Ivan Hurt_, Jun 14 2016
MATHEMATICA
Select[Range[0, 200], MemberQ[{1, 3, 4}, Mod[#, 5]] &] (* _Vladimir Joseph Stephan Orlovsky_, Feb 12 2012 *)
PROG
(Magma) [ n : n in [1..150] | n mod 5 in [1, 3, 4] ]; // _Vincenzo Librandi_, Mar 31 2011
(PARI) a(n)=(5*n-1)\3 \\ _Charles R Greathouse IV_, Jul 01 2013
CROSSREFS
Cf. A001622.
Sequence in context: A059535 A061402 A330066 * A187474 A081031 A285681
KEYWORD
nonn,easy
AUTHOR
_N. J. A. Sloane_
STATUS
approved