[go: up one dir, main page]

login
A047208
Numbers that are congruent to {0, 4} mod 5.
28
0, 4, 5, 9, 10, 14, 15, 19, 20, 24, 25, 29, 30, 34, 35, 39, 40, 44, 45, 49, 50, 54, 55, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 114, 115, 119, 120, 124, 125, 129, 130, 134, 135, 139, 140, 144, 145, 149
OFFSET
1,2
COMMENTS
Also solutions to 3^x + 5^x == 2 (mod 11). - Cino Hilliard, May 18 2003
FORMULA
From R. J. Mathar, Jan 24 2009: (Start)
G.f.: x^2*(4+x)/((1-x)^2*(1+x)).
a(n) = a(n-2) + 5. (End)
a(n) = 5*n - 6 - a(n-1) (with a(1)=0). - Vincenzo Librandi, Nov 18 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k), with b(0)=4 and b(k) = A020714(k-1) = 5*2^(k-1) for k>0. - Philippe Deléham, Oct 17 2011
a(n) = ceiling((5/3)*ceiling(3*n/2)). - Clark Kimberling, Jul 04 2012
a(n) = (5*(n-1) + 3*(n-1 mod 2))/2 = (5*(n-1) + A010674(n-1))/2. - G. C. Greubel, Nov 23 2021
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + log(phi)/(2*sqrt(5)) - sqrt(1+2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: 1 + ((5*x - 7/2)*exp(x) + (3/2)*exp(-x))/2. - David Lovler, Aug 23 2022
MATHEMATICA
{#, #+4}&/@(5*Range[0, 30])//Flatten (* Harvey P. Dale, Apr 05 2019 *)
PROG
(PARI) forstep(n=0, 200, [4, 1], print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
(Magma) [(5*(n-1) + 3*((n-1) mod 2))/2: n in [1..100]]; // G. C. Greubel, Nov 23 2021
(Sage) [(5*(n-1) +3*((n-1)%2))/2 for n in (1..100)] # G. C. Greubel, Nov 23 2021
CROSSREFS
Cf. A001622, A010674, A010685 (first differences), A274406.
Sequence in context: A287962 A001983 A143575 * A177887 A032381 A191888
KEYWORD
nonn,easy
STATUS
approved