Klassisk sannolikhetsdefinition
Utseende
Den klassiska sannolikhetsdefinitionen är
- Vid likformig sannolikhetsfördelning är sannolikheten för en händelse lika med kvoten mellan antalet för händelsen gynnsamma fall och antalet möjliga fall:[1]
Om det till exempel finns 7 svarta och 3 vita kulor i en urna, är sannolikheten att man vid första dragningen erhåller en vit kula 3/10. Sannolikheten att man erhåller en svart kula är 7/10.
Definitionen konstruerades av Blaise Pascal och Pierre de Fermat under deras berömda brevväxling då de löste De Mérés problem år 1654.[källa behövs]
Källor
[redigera | redigera wikitext]- ^ Rudemo, Mats; Lennart Råde (1970). Sannolikhetslära och statistik med tekniska tillämpningar: del 1. Stockholm: Biblioteksförlaget. sid. 31