Value |
Name |
Symbol |
LaTeX |
Formula |
Type |
OEIS |
Continued fraction
|
3.24697960371746706105000976800847962
|
Silver, Tutte–Beraha constant
|
|
|
2+2 cos(2Pi/7)
|
I
|
A116425
|
[3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...]
|
1.09864196439415648573466891734359621
|
Paris constant
|
|
|
|
I
|
A105415
|
[1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...]
|
2.74723827493230433305746518613420282
|
Ramanujan nested radical R5
|
|
|
(2+sqrt(5)+sqrt(15-6 sqrt(5)))/2
|
I
|
|
[2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...]
|
2.23606797749978969640917366873127624
|
Square root of 5, Gauss sum
|
|
|
Sum[k=0 to 4]{e^(2k^2 pi i/5)}
|
I
|
A002163
|
[2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...] = [2;(4),...]
|
3.62560990822190831193068515586767200
|
Gamma(1/4)
|
|
|
4(1/4)!
|
T
|
A068466
|
[3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...]
|
0.18785964246206712024851793405427323
|
MRB constant, Marvin Ray Burns
|
|
|
Sum[n=1 to ∞]{(-1)^n (n^(1/n)-1)}
|
T
|
A037077
|
[0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...]
|
0.11494204485329620070104015746959874
|
Kepler–Bouwkamp constant
|
|
|
prod[n=3 to ∞]{cos(pi/n)}
|
T
|
A085365
|
[0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...]
|
1.78107241799019798523650410310717954
|
Exp(gamma) G-Barnes function
|
|
|
Prod[n=1 to ∞]{e^(1/n)}/{1 + 1/n}
|
T
|
A073004
|
[1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...]
|
1.28242712910062263687534256886979172
|
Glaisher–Kinkelin constant
|
|
|
e^(1/2-zeta´{-1})
|
T
|
A074962
|
[1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...]
|
7.38905609893065022723042746057500781
|
Schwarzschild conic constant
|
|
|
Sum[n=0 to ∞]{2^n/n!}
|
T
|
A072334
|
[7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...] = [7,2,(1,1,n,4*n+6,n+2)], n = 3, 6, 9, etc.
|
1.01494160640965362502120255427452028
|
Gieseking constant
|
|
.
|
|
T
|
A143298
|
[1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...]
|
2.62205755429211981046483958989111941
|
Lemniscata constant
|
|
|
4 sqrt(2/pi) (1/4!)^2
|
T
|
A062539
|
[2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...]
|
0.83462684167407318628142973279904680
|
G, Gauss constant
|
|
|
(4 sqrt(2)(1/4!)^2)/pi^(3/2)
|
T
|
A014549
|
[0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...]
|
1.01734306198444913971451792979092052
|
Zeta(6)
|
|
|
Prod[n=1 to ∞] {1/(1-ithprime(n)^-6)}
|
T
|
A013664
|
[1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...]
|
0,60792710185402662866327677925836583
|
Constante de Hafner-Sarnak-McCurley
|
|
|
Prod{n=1 to ∞} (1-1/ithprime(n)^2)
|
T
|
A059956
|
[0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...]
|
1.11072073453959156175397024751517342
|
The ratio of a square and circumscribed or inscribed circles
|
|
|
sum[n=1 to ∞]{(-1)^(floor((n-1)/2))/(2n-1)}
|
T
|
A093954
|
[1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...]
|
2.80777024202851936522150118655777293
|
Fransén–Robinson constant
|
|
|
N[int[0 to ∞] {1/Gamma(x)}]
|
T
|
A058655
|
[2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...]
|
1.64872127070012814684865078781416357
|
Square root of e
|
|
|
sum[n=0 to ∞]{1/(2^n n!)}
|
T
|
A019774
|
[1;1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,...] = [1;1,(1,1,4p+1)], p∈ℕ
|
i
|
i, imaginary unit
|
|
|
sqrt(-1)
|
C
|
|
|
262537412640768743.999999999999250073
|
Hermite-Ramanujan constant
|
|
|
e^(π sqrt(163))
|
T
|
A060295
|
[262537412640768743;1,1333462407511,1,8,1,1,5,...]
|
4.81047738096535165547303566670383313
|
John constant
|
|
|
e^(π/2)
|
T
|
A042972
|
[4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,...]
|
4.53236014182719380962768294571666681
|
Constante de Van der Pauw
|
|
|
π/ln(2)
|
T
|
A163973
|
[4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...]
|
0.76159415595576488811945828260479359
|
Hyperbolic tangent (1)
|
|
|
(e-1/e)/(e+1/e)
|
T
|
A073744
|
[0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...] = [0;(2p+1)], p∈ℕ
|
0.69777465796400798200679059255175260
|
Continued Fraction constant
|
|
|
(sum {n=0 to inf} n/(n!n!)) /(sum {n=0 to inf} 1/(n!n!))
|
|
A052119
|
[0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...] = [0;(p+1)], p∈ℕ
|
0.36787944117144232159552377016146086
|
Inverse Napier constant
|
|
|
sum[n=2 to ∞]{(-1)^n/n!}
|
T
|
A068985
|
[0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...] = [0;2,1,(1,2p,1)], p∈ℕ
|
2.71828182845904523536028747135266250
|
Napier constant
|
|
|
Sum[n=0 to ∞]{1/n!}
|
T
|
A001113
|
[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...] = [2;(1,2p,1)], p∈ℕ
|
0.49801566811835604271369111746219809 - 0.15494982830181068512495513048388 i
|
Factorial of i
|
|
|
Gamma(1+i)
|
C
|
A212877 A212878
|
[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...] - [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i
|
0.43828293672703211162697516355126482 + 0.36059247187138548595294052690600 i
|
Infinite Tetration of i
|
|
|
i^i^i^...
|
C
|
A077589 A077590
|
[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...] + [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i
|
0.56755516330695782538461314419245334
|
Module of Infinite Tetration of i
|
|
|
Mod(i^i^i^...)
|
|
A212479
|
[0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...]
|
0.26149721284764278375542683860869585
|
Meissel-Mertens constant
|
|
..... p: primes
|
|
|
A077761
|
[0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,...]
|
1.9287800...
|
Wright constant
|
|
= primos: =3, =13, =16381,
|
|
|
A086238
|
[1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3]
|
0.37395581361920228805472805434641641
|
Artin constant
|
|
...... pn: primo
|
|
T
|
A005596
|
[0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...]
|
4.66920160910299067185320382046620161
|
Feigenbaum constant δ
|
|
|
|
T
|
A006890
|
[4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...]
|
2.50290787509589282228390287321821578
|
Feigenbaum constant α
|
|
|
|
T
|
A006891
|
[2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...]
|
5.97798681217834912266905331933922774
|
Hexagonal Madelung Constant 2
|
|
|
Pi Log[3]Sqrt[3]
|
T
|
A086055
|
[5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...]
|
0.96894614625936938048363484584691860
|
Beta(3)
|
|
|
Sum[n=1 to ∞]{(-1)^(n+1)/(-1+2n)^3}
|
T
|
A153071
|
[0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...]
|
1.902160583104
|
Brun constant 2 = Σ inverse twin primes
|
|
|
|
|
A065421
|
[1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2]
|
0.870588379975
|
Brun constant 4 = Σ inverse of twin prime
|
|
|
|
|
A213007
|
[0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1]
|
22.4591577183610454734271522045437350
|
pi^e
|
|
|
pi^e
|
|
A059850
|
[22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...]
|
3.14159265358979323846264338327950288
|
Pi, Archimedes constant
|
|
|
Sum[n=0 to ∞]{(-1)^n 4/(2n+1)}
|
T
|
A000796
|
[3;7,15,1,292,1,1,1,2,1,3,1,14,...]
|
0.06598803584531253707679018759684642
|
|
|
... Lower limit of Tetration
|
|
T
|
A073230
|
[0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...]
|
0.20787957635076190854695561983497877
|
i^i
|
|
|
e^(-pi/2)
|
T
|
A049006
|
[0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...]
|
0.28016949902386913303643649123067200
|
Bernstein constant
|
|
|
|
T
|
A073001
|
[0;3,1,1,3,9,6,3,1,3,13,1,16,3,3,4,…]
|
0.28878809508660242127889972192923078
|
Flajolet and Richmond
|
|
|
prod[n=1 to ∞]{1-1/2^n}
|
|
A048651
|
|
0.31830988618379067153776752674502872
|
Inverse of Pi, Ramanujan
|
|
|
|
T
|
A049541
|
[0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,...]
|
0.47494937998792065033250463632798297
|
Weierstraß constant
|
|
|
(E^(Pi/8) Sqrt[Pi])/(4 2^(3/4) (1/4)!^2)
|
T
|
A094692
|
[0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,...]
|
0.56714329040978387299996866221035555
|
Omega constant
|
|
|
sum[n=1 to ∞]{(-n)^(n-1)/n!}
|
T
|
A030178
|
[0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,...]
|
0.57721566490153286060651209008240243
|
Euler's number
|
|
|
sum[n=1 to ∞]|sum[k=0 to ∞]{((-1)^k)/(2^n+k)}
|
?
|
A001620
|
[0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,...]
|
0.60459978807807261686469275254738524
|
Dirichlet serie
|
|
|
Sum[1/(n Binomial[2 n, n]), {n, 1, ∞}]
|
T
|
A073010
|
[0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,...]
|
0.63661977236758134307553505349005745
|
2/Pi, François Viète
|
|
|
|
T
|
A060294
|
[0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...]
|
0.66016181584686957392781211001455577
|
Twin prime constant
|
|
|
prod[p=3 to ∞]{p(p-2)/(p-1)^2
|
|
A005597
|
[0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...]
|
0.66274341934918158097474209710925290
|
Laplace Limit constant
|
|
|
|
|
A033259
|
[0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,...]
|
0.69314718055994530941723212145817657
|
Logarithm de 2
|
|
|
Sum[n=1 to ∞]{(-1)^(n+1)/n}
|
T
|
A002162
|
[0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,...]
|
0.78343051071213440705926438652697546
|
Sophomore's Dream 1 J.Bernoulli
|
|
|
Sum[ -(-1)^n /n^n]
|
T
|
A083648
|
[0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,...]
|
0.78539816339744830961566084581987572
|
Dirichlet beta(1)
|
|
|
Sum[n=0 to ∞]{(-1)^n/(2n+1)}
|
T
|
A003881
|
[0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,...]
|
0.82246703342411321823620758332301259
|
Traveling Salesman Nielsen-Ramanujan
|
|
|
Sum[n=1 to ∞]{((-1)^(k+1))/n^2}
|
T
|
A072691
|
[0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,...]
|
0.91596559417721901505460351493238411
|
Catalan constant
|
|
|
Sum[n=0 to ∞]{(-1)^n/(2n+1)^2}
|
I
|
A006752
|
[0;1,10,1,8,1,88,4,1,1,7,22,1,2,...]
|
1.05946309435929526456182529494634170
|
Ratio of the distance between semi-tones
|
|
|
2^(1/12)
|
I
|
A010774
|
[1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...]
|
1,.08232323371113819151600369654116790
|
Zeta(04)
|
|
|
Sum[n=1 to ∞]{1/n^4}
|
T
|
A013662
|
[1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,...]
|
1.1319882487943 ...
|
Viswanaths Archived 2013-04-13 at the Wayback Machine constant
|
|
|
|
|
A078416
|
[1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...]
|
1.20205690315959428539973816151144999
|
Apéry constant
|
|
|
Sum[n=1 to ∞]{1/n^3}
|
I
|
A010774
|
[1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,...]
|
1.22541670246517764512909830336289053
|
Gamma(3/4)
|
|
|
(-1+3/4)!
|
T
|
A068465
|
[1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,...]
|
1.23370055013616982735431137498451889
|
Favard constant
|
|
|
sum[n=1 to ∞]{1/((2n-1)^2)}
|
T
|
A111003
|
[1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...]
|
1.25992104989487316476721060727822835
|
Cube root of 2, constante Delian
|
|
|
2^(1/3)
|
I
|
A002580
|
[1;3,1,5,1,1,4,1,1,8,1,14,1,10,...]
|
1.29128599706266354040728259059560054
|
Sophomore's Dream 2 J.Bernoulli
|
|
|
Sum[1/(n^n]), {n, 1, ∞}]
|
|
A073009
|
[1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,...]
|
1.32471795724474602596090885447809734
|
Plastic number
|
|
|
|
I
|
A060006
|
[1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,...]
|
1.41421356237309504880168872420969808
|
Square root of 2, Pythagoras constant
|
|
|
prod[n=1 to ∞]{1+(-1)^(n+1)/(2n-1)}
|
I
|
A002193
|
[1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...] = [1;(2),...]
|
1.44466786100976613365833910859643022
|
Steiner number
|
|
... Upper Limit of Tetration
|
|
|
A073229
|
[1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...]
|
1.53960071783900203869106341467188655
|
Lieb's Square Ice constant
|
|
|
(4/3)^(3/2)
|
I
|
A118273
|
[1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...]
|
1.57079632679489661923132169163975144
|
Wallis product
|
|
|
|
T
|
A019669
|
[1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1...]
|
1.60669515241529176378330152319092458
|
Erdős–Borwein constant
|
|
|
sum[n=1 to ∞]{1/(2^n-1)}
|
I
|
A065442
|
[1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,...]
|
1.61803398874989484820458633436563812
|
Phi, Golden ratio
|
|
|
(1+5^(1/2))/2
|
I
|
A001622
|
[0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...] = [0;(1),...]
|
1.64493406684822643647241516664602519
|
Zeta(2)
|
|
|
Sum[n=1 to ∞]{1/n^2}
|
T
|
A013661
|
[1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...]
|
1.66168794963359412129581892274995074
|
Somos' quadratic recurrence constant
|
|
|
|
T
|
A065481
|
[1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...]
|
1.73205080756887729352744634150587237
|
Theodorus constant
|
|
|
3^(1/2)
|
I
|
A002194
|
[1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...] = [1;(1,2),...]
|
1.75793275661800453270881963821813852
|
Kasner number
|
|
|
|
|
A072449
|
[1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...]
|
1.77245385090551602729816748334114518
|
Carlson-Levin constant
|
|
|
sqrt (pi)
|
T
|
A002161
|
[1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...]
|
2.29558714939263807403429804918949038
|
P, Universal parabolic constant
|
|
|
ln(1+sqrt 2)+sqrt 2
|
T
|
A103710
|
[2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,...]
|
2.30277563773199464655961063373524797
|
Bronze Number
|
|
|
(3+sqrt 13)/2
|
I
|
A098316
|
[3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...] = [3;(3),...]
|
2.37313822083125090564344595189447424
|
Lévy constant2
|
|
|
Pi^(2)/(6*ln(2))
|
T
|
A174606
|
[2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...]
|
2.50662827463100050241576528481104525
|
square root of 2 pi
|
|
|
sqrt (2*pi)
|
T
|
A019727
|
[2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...]
|
2.66514414269022518865029724987313985
|
Gelfond-Schneider constant
|
|
|
2^sqrt{2}
|
T
|
A007507
|
[2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...]
|
2.68545200106530644530971483548179569
|
Khintchin constant
|
|
|
prod[n=1 to ∞]{(1+1/(n(n+2)))^((ln(n)/ln(2))}
|
?
|
A002210
|
[2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...]
|
3.27582291872181115978768188245384386
|
Khinchin-Lévy constant
|
|
|
e^(\pi^2/(12 ln(2))
|
|
A086702
|
[3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...]
|
3.35988566624317755317201130291892717
|
Reciprocal Fibonacci constant
|
|
|
|
|
A079586
|
[3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...]
|
4.13273135412249293846939188429985264
|
Root of 2 e pi
|
|
|
sqrt(2e pi)
|
T
|
A019633
|
[4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...]
|
6.58088599101792097085154240388648649
|
Froda constant
|
|
|
2^e
|
|
|
[6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...]
|
9.86960440108935861883449099987615114
|
Pi Squared
|
|
|
6 Sum[n=1 to ∞]{1/n^2}
|
T
|
A002388
|
[9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,...]
|
23.1406926327792690057290863679485474
|
Gelfond constant
|
|
|
Sum[n=0 to ∞]{(pi^n)/n!}
|
T
|
A039661
|
[23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...]
|