[go: up one dir, main page]

login
A001113
Decimal expansion of e.
(Formerly M1727 N0684)
664
2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5, 2, 3, 5, 3, 6, 0, 2, 8, 7, 4, 7, 1, 3, 5, 2, 6, 6, 2, 4, 9, 7, 7, 5, 7, 2, 4, 7, 0, 9, 3, 6, 9, 9, 9, 5, 9, 5, 7, 4, 9, 6, 6, 9, 6, 7, 6, 2, 7, 7, 2, 4, 0, 7, 6, 6, 3, 0, 3, 5, 3, 5, 4, 7, 5, 9, 4, 5, 7, 1, 3, 8, 2, 1, 7, 8, 5, 2, 5, 1, 6, 6, 4, 2, 7, 4, 2, 7, 4, 6
OFFSET
1,1
COMMENTS
e is sometimes called Euler's number or Napier's constant.
Also, decimal expansion of sinh(1)+cosh(1). - Mohammad K. Azarian, Aug 15 2006
If m and n are any integers with n > 1, then |e - m/n| > 1/(S(n)+1)!, where S(n) = A002034(n) is the smallest number such that n divides S(n)!. - Jonathan Sondow, Sep 04 2006
Limit_{n->infinity} A000166(n)*e - A000142(n) = 0. - Seiichi Kirikami, Oct 12 2011
Euler's constant (also known as Euler-Mascheroni constant) is gamma = 0.57721... and Euler's number is e = 2.71828... . - Mohammad K. Azarian, Dec 29 2011
One of the many continued fraction expressions for e is 2+2/(2+3/(3+4/(4+5/(5+6/(6+ ... from Ramanujan (1887-1920). - Robert G. Wilson v, Jul 16 2012
e maximizes the value of x^(c/x) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. This explains why elements of A000792 are composed primarily of factors of 3, and where needed, some factors of 2. These are the two primes closest to e. - Richard R. Forberg, Oct 19 2014
There are two real solutions x to c^x = x^c when c, x > 0 and c != e, one of which is x = c, and only one real solution when c = e, where the solution is x = e. - Richard R. Forberg, Oct 22 2014
This is the expected value of the number of real numbers that are independently and uniformly chosen at random from the interval (0, 1) until their sum exceeds 1 (Bush, 1961). - Amiram Eldar, Jul 21 2020
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.
E. Maor, e: The Story of a Number, Princeton Univ. Press, 1994.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 52.
G. W. Reitwiesner, An ENIAC determination of pi and e to more than 2000 decimal places. Math. Tables and Other Aids to Computation 4, (1950). 11-15.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 46.
LINKS
N. J. A. Sloane, Table of 50000 digits of e labeled from 1 to 50000 [based on the ICON Project link below]
Mohammad K. Azarian, An Expansion of e, Problem # B-765, Fibonacci Quarterly, Vol. 32, No. 2, May 1994, p. 181. Solution appeared in Vol. 33, No. 4, Aug. 1995, p. 377.
Mohammad K. Azarian, Euler's Number Via Difference Equations, International Journal of Contemporary Mathematical Sciences, Vol. 7, 2012, No. 22, pp. 1095 - 1102.
L. E. Bush, The William Lowell Putnam Mathematical Competition, The American Mathematical Monthly, Vol. 68, No. 1 (1961), pp. 18-33, problem 3.
Ed Copeland and Brady Haran, A proof that e is irrational, Numberphile video (2021).
Dave's Math Tables, e
X. Gourdon, Plouffe's Inverter, e to 1.250 billion digits
X. Gourdon and P. Sebah, The constant e and its computation
ICON Project, e to 50000 places
Roger Mansuy, Un intrigant poème... mathématique, Images des Mathématiques, CNRS, 2023. In French.
R. Nemiroff and J. Bonnell, The first 5 million digits of the number e
J. J. O'Connor & E. F. Robertson, The number e
Michael Penn, e is irrational, YouTube video, 2020.
Simon Plouffe, A million digits
G. W. Reitwiesner, An ENIAC determination of pi and e to more than 2000 decimal places, Pi, A Source book, pp 277-281, 2000.
E. Sandifer, How Euler Did It, Who proved e is irrational?, MAA Online (2006)
D. Shanks and J. W. Wrench, Jr., Calculation of e to 100,000 decimals, Math. Comp., 23 (1969), 679-680.
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly, 113 (2006), 637-641 (article) and 114 (2007), 659 (addendum).
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
G. Villemin's Almanach of Numbers, Constant "e"
Eric Weisstein's World of Mathematics, e
Eric Weisstein's World of Mathematics, e Digits
Eric Weisstein's World of Mathematics, Factorial Sums
Eric Weisstein's World of Mathematics, Uniform Sum Distribution
Eric Weisstein's World of Mathematics, e Approximations
FORMULA
e = Sum_{k >= 0} 1/k! = lim_{x -> 0} (1+x)^(1/x).
e is the unique positive root of the equation Integral_{u = 1..x} du/u = 1.
exp(1) = ((16/31)*(1 + Sum_{n>=1} ((1/2)^n*((1/2)*n^3 + (1/2)*n + 1)/n!)))^2. Robert Israel confirmed that the above formula is correct, saying: "In fact, Sum_{n=0..oo} n^j*t^n/n! = P_j(t)*exp(t) where P_0(t) = 1 and for j >= 1, P_j(t) = t (P_(j-1)'(t) + P_(j-1)(t)). Your sum is 1/2*P_3(1/2) + 1/2*P_1(1/2) + P_0(1/2)." - Alexander R. Povolotsky, Jan 04 2009
exp(1) = (1 + Sum_{n>=1} ((1+n+n^3)/n!))/7. - Alexander R. Povolotsky, Sep 14 2011
e = 1 + (2 + (3 + (4 + ...)/4)/3)/2 = 2 + (1 + (1 + (1 + ...)/4)/3)/2. - Rok Cestnik, Jan 19 2017
From Peter Bala, Nov 13 2019: (Start)
The series representation e = Sum_{k >= 0} 1/k! is the case n = 0 of the more general result e = n!*Sum_{k >= 0} 1/(k!*R(n,k)*R(n,k+1)), n = 0,2,3,4,..., where R(n,x) is the n-th row polynomial of A269953.
e = 2 + Sum_{n >= 0} (-1)^n*(n+2)!/(d(n+2)*d(n+3)), where d(n) = A000166(n).
e = Sum_{n >= 0} (x^2 + (n+2)*x + n)/(n!(n + x)*(n + 1 + x)), provided x is not zero or a negative integer. (End)
Equals lim_{n -> oo} (2*3*5*...*prime(n))^(1/prime(n)). - Peter Luschny, May 21 2020
e = 3 - Sum_{n >= 0} 1/((n+1)^2*(n+2)^2*n!). - Peter Bala, Jan 13 2022
e = lim_{n->oo} prime(n)*(1 - 1/n)^prime(n). - Thomas Ordowski, Jan 31 2023
e = 1+(1/1)*(1+(1/2)*(1+(1/3)*(1+(1/4)*(1+(1/5)*(1+(1/6)*(...)))))), equivalent to the first formula. - David Ulgenes, Dec 01 2023
From Michal Paulovic, Dec 12 2023: (Start)
Equals lim_{n->oo} (1 + 1/n)^n.
Equals x^(x^(x^...)) (infinite power tower) where x = e^(1/e) = A073229. (End)
Equals Product_{k>=1} (1 + 1/k) * (1 - 1/(k + 1)^2)^k. - Antonio Graciá Llorente, May 14 2024
Equals lim_{n->oo} Product_{k=1..n} (n^2 + k)/(n^2 - k) (see Finch). - Stefano Spezia, Oct 19 2024
EXAMPLE
2.71828182845904523536028747135266249775724709369995957496696762772407663...
MAPLE
Digits := 200: it := evalf((exp(1))/10, 200): for i from 1 to 200 do printf(`%d, `, floor(10*it)): it := 10*it-floor(10*it): od: # James A. Sellers, Feb 13 2001
MATHEMATICA
RealDigits[E, 10, 120][[1]] (* Harvey P. Dale, Nov 14 2011 *)
PROG
(PARI) default(realprecision, 50080); x=exp(1); for (n=1, 50000, d=floor(x); x=(x-d)*10; write("b001113.txt", n, " ", d)); \\ Harry J. Smith, Apr 15 2009
(Haskell) -- See Niemeijer link.
a001113 n = a001113_list !! (n-1)
a001113_list = eStream (1, 0, 1)
[(n, a * d, d) | (n, d, a) <- map (\k -> (1, k, 1)) [1..]] where
eStream z xs'@(x:xs)
| lb /= approx z 2 = eStream (mult z x) xs
| otherwise = lb : eStream (mult (10, -10 * lb, 1) z) xs'
where lb = approx z 1
approx (a, b, c) n = div (a * n + b) c
mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
-- Reinhard Zumkeller, Jun 12 2013
CROSSREFS
Cf. A002034, A003417 (continued fraction), A073229, A122214, A122215, A122216, A122217, A122416, A122417.
Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), A004598 (b=7), A004599 (b=8), A004600 (b=9), this sequence (b=10), A170873 (b=16). - Jason Kimberley, Dec 05 2012
Powers e^k: A092578 (k = -7), A092577 (k = -6), A092560 (k = -5), A092553 - A092555 (k = -2 to -4), A068985 (k = -1), A072334 (k = 2), A091933 (k = 3), A092426 (k = 4), A092511 - A092513 (k = 5 to 7).
Sequence in context: A368617 A060302 A368656 * A368653 A248685 A182587
KEYWORD
nonn,cons,nice,core
STATUS
approved