Центральные многоугольные числа

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Центральные многоугольные числа показывают, на какое максимальное число кусков можно разрезать круг прямыми линиями.

  • a(0) = 1
  • a(1) = 2
  • a(2) = 4
  • a(3) = 7
  • a(n) = n * (n + 1)/2 + 1


Эта числовая последовательность A000124 в OEIS, начинается с , выражается

1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, …

Каждое число этой последовательности равно 1 плюс треугольное число.

Классическое условие звучит так. Возьмем блин и попробуем разрезать его на максимальное количество кусочков с минимальным количеством разрезов. Кусочки могут быть не обязательно одинаковые по размеру. Например, чтобы нарезать блин на 4 кусочка, достаточно сделать два разреза крестом. Тремя разрезами можно получить 7 кусочков и так далее.

На английском эта последовательность называется англ. Lazy caterer's sequence и переводится как «последовательность ленивого официанта».

Аналогом центральных многоугольных чисел для трёхмерного куба являются числа торта.

Литература

[править | править код]
  • Деза Е. И. — Специальные числа натурального ряда ISBN 978-5-397-01750-3
  • последовательность A000124 в OEIS