[go: up one dir, main page]

Awa Dieng

I am a Research Associate on the Google Brain team working on Machine Learning, Causality, and Algorithmic Fairness. Personal website: awadieng.me

Research Areas

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Neglected tropical diseases (NTDs) and infectious diseases disproportionately affect the poorest regions of the world. While large language models (LLMs) have shown promise for medical question answering, there is limited work focused on tropical and infectious disease-specific explorations. We introduce TRINDs, a dataset of 52 tropical and infectious diseases with demographic and semantic clinical and consumer augmentations. We evaluate various context and counterfactual locations to understand their influence on LLM performance. Results show that LLMs perform best when provided with contextual information such as demographics, location, and symptoms. We also develop TRINDs-LM, a tool that enables users to enter symptoms and contextual information to receive a most likely diagnosis. In addition to the LLM evaluations, we also conducted a human expert baseline study to assess the accuracy of human experts in diagnosing tropical and infectious diseases with 7 medical and public health experts. This work demonstrates methods for creating and evaluating datasets for testing and optimizing LLMs, and the use of a tool that could improve digital diagnosis and tracking of NTDs. View details
    Preview abstract Background: Artificial Intelligence for health has the potential to significantly change and improve healthcare. However in most African countries identifying culturally and contextually attuned approaches for deploying these solutions is not well understood. To bridge this gap, we conduct a qualitative study to investigate the best practices, fairness indicators and potential biases to mitigate when deploying AI for health in African countries, as well as explore opportunities where artificial intelligence could make a positive impact in health. Methods: We used a mixed methods approach combining in-depth interviews (IDIs) and surveys. We conduct 1.5-2 hour long IDIs with 50 experts in health, policy and AI across 17 countries, and through an inductive approach we conduct a qualitative thematic analysis on expert IDI responses. We administer a blinded 30-minute survey with thought-cases to 672 general population participants across 5 countries in Africa (Ghana, South Africa, Rwanda, Kenya and Nigeria), and analyze responses on quantitative scales, statistically comparing responses by country, age, gender, and level of familiarity with AI. We thematically summarize open-ended responses from surveys. Results and Conclusion: Our results find generally positive attitudes, high levels of trust, accompanied by moderate levels of concern among general population participants for AI usage for health in Africa. This contrasts with expert responses, where major themes revolved around trust/mistrust, AI ethics concerns, and systemic barriers to overcome, among others. This work presents the first-of-its-kind qualitative research study of the potential of AI for health in Africa with perspectives from both experts and the general population. We hope that this work guides policy makers and drives home the need for education and the inclusion of general population perspectives in decision-making around AI usage. View details
    Preview abstract Large language models (LLMs) hold promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities. Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity. We present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions and conduct a large-scale empirical case study with the Med-PaLM 2 LLM. Our contributions include a multifactorial framework for human assessment of LLM-generated answers for biases and EquityMedQA, a collection of seven datasets enriched for adversarial queries. Both our human assessment framework and our dataset design process are grounded in an iterative participatory approach and review of Med-PaLM 2 answers. Through our empirical study, we find that our approach surfaces biases that may be missed by narrower evaluation approaches. Our experience underscores the importance of using diverse assessment methodologies and involving raters of varying backgrounds and expertise. While our approach is not sufficient to holistically assess whether the deployment of an artificial intelligence (AI) system promotes equitable health outcomes, we hope that it can be leveraged and built upon toward a shared goal of LLMs that promote accessible and equitable healthcare. View details
    Preview abstract With growing machine learning (ML) and large language model applications in healthcare, there have been calls for fairness in ML to understand and mitigate ethical concerns these systems may pose. Fairness has implications for health in Africa, which already has inequitable power imbalances between the Global North and South. This paper seeks to explore fairness for global health, with Africa as a case study. We conduct a scoping review to propose fairness attributes for consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. We then conduct qualitative research studies with 625 general population study participants in 5 countries in Africa and 28 experts in ML, Health, and/or policy focussed on Africa to obtain feedback on the proposed attributes. We delve specifically into understanding the interplay between AI, health and colonialism. Our findings demonstrate that among experts there is a general mistrust that technologies that are solely developed by former colonizers can benefit Africans, and that associated resource constraints due to pre-existing economic and infrastructure inequities can be linked to colonialism. General population survey responses found about an average of 40% of people associate an undercurrent of colonialism to AI and this was most dominant amongst participants from South Africa. However the majority of the general population participants surveyed did not think there was a direct link between AI and colonialism.Colonial history, country of origin, National income level were specific axes of disparities that participants felt would cause an AI tool to be biased This work serves as a basis for policy development around Artificial Intelligence for health in Africa and can be expanded to other regions. View details
    Preview abstract With growing machine learning (ML) and large language model applications in healthcare, there have been calls for fairness in ML to understand and mitigate ethical concerns these systems may pose. Fairness has implications for health in Africa, which already has inequitable power imbalances between the Global North and South. This paper seeks to explore fairness for global health, with Africa as a case study. We conduct a scoping review to propose fairness attributes for consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. We then conduct qualitative research studies with 625 general population study participants in 5 countries in Africa and 28 experts in ML, Health, and/or policy focussed on Africa to obtain feedback on the proposed attributes. We delve specifically into understanding the interplay between AI, health and colonialism. Our findings demonstrate that among experts there is a general mistrust that technologies that are solely developed by former colonizers can benefit Africans, and that associated resource constraints due to pre-existing economic and infrastructure inequities can be linked to colonialism. General population survey responses found about an average of 40% of people associate an undercurrent of colonialism to AI and this was most dominant amongst participants from South Africa. However the majority of the general population participants surveyed did not think there was a direct link between AI and colonialism.Colonial history, country of origin, National income level were specific axes of disparities that participants felt would cause an AI tool to be biased This work serves as a basis for policy development around Artificial Intelligence for health in Africa and can be expanded to other regions. View details
    Preview abstract As machine learning (ML) systems see far-reaching applications in healthcare, there have been calls for fairness in machine learning to understand and mitigate ethical concerns these systems may pose. Fairness has thus far mostly been defined from a Western lens, and has implications for global health in Africa, which already has inequitable power imbalances between the Global North and South. This paper seeks to explore fairness for global health, with Africa as a case study. We propose fairness attributes for consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. This serves as a basis and call for action for furthering research into fairness in global health. View details
    Preview abstract As machine learning (ML) systems see far-reaching applications in healthcare, there have been calls for fairness in machine learning to understand and mitigate ethical concerns these systems may pose. Fairness has thus far mostly been defined from a Western lens, and has implications for global health in Africa, which already has inequitable power imbalances between the Global North and South. This paper seeks to explore fairness for global health, with Africa as a case study. We propose fairness attributes for consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. This serves as a basis and call for action for furthering research into fairness in global health. View details
    Preview abstract Diagnosing and mitigating changes in model fairness under distribution shift is an important component of the safe deployment of machine learning in healthcare settings. Importantly, the success of any mitigation strategy strongly depends on the structure of the shift. Despite this, there has been little discussion of how to empirically assess the structure of a distribution shift that one is encountering in practice. In this work, we adopt a causal framing to motivate conditional independence tests as a key tool for characterizing distribution shifts. Using our approach in two medical applications, we show that this knowledge can help diagnose failures of fairness transfer, including cases where real-world shifts are more complex than is often assumed in the literature. Based on these results, we discuss potential remedies at each step of the machine learning pipeline. View details
    Causal inference methods for combining randomized trials and observational studies: a review
    Benedicte Colnet
    Imke Mayer
    Guanhua Chen
    Ruohong Li
    Gaël Varoquaux
    Jean-Philippe Vert
    Julie Josse
    Shu Yang
    arXiv (2020)
    Preview abstract With increasing data availability, treatment causal effects can be evaluated across different dataset, both randomized trials and observational studies. Randomized trials isolate the effect of the treatment from that of unwanted (confounding) co-occuring effects. But they may be applied to limited populations, and thus lack external validity. On the opposite large observational samples are often more representative of the target population but can conflate confounding effects with the treatment of interest. In this paper, we review the growing literature on methods for causal inference on combined randomized trial and observational studies, striving for the best of both worlds. We first discuss identification and estimation methods that improve generalizability of randomized controlled trials (RCTs) using the representativeness of observational data. Classical estimators include weighting, difference between conditional outcome models, and double robust estimators. We then discuss methods that combining RCTs and observational data to improve the (conditional) average treatment effect estimation, handling possible unmeasured confounding in the observational data. We also connect and contrast works developed in both the potential outcomes framework and the structural causal models framework. Finally, we compare the main methods using a simulation study and real world data to analyse the effect of tranexamic acid on the mortality rate in major trauma patients. Code to implement many of the methods is provided. View details