[go: up one dir, main page]

Plasmodium falciparum multiplicity of infection and pregnancy outcomes in Congolese women from southern Brazzaville, Republic of Congo

Malar J. 2022 Apr 2;21(1):114. doi: 10.1186/s12936-022-04105-w.

Abstract

Background: Investigating whether the multiplicity of Plasmodium falciparum infection (MOI) is related to pregnancy outcomes, is of interest in sub-Saharan area where malaria is highly endemic. The present study aimed to characterize the genetic diversity of P. falciparum in women at delivery from Southern Brazzaville, and investigate whether the MOI is associated with maternal anaemia, preterm delivery, or low birth weight.

Methods: This was a cross sectional study carried out with samples collected between March 2014 and April 2015 from 371 women recruited at delivery at a Health Centre in southern Brazzaville, Republic of Congo. Matched peripheral, placental, and cord blood collected from each of the women at delivery were used for the detection of P. falciparum microscopic and submicroscopic parasitaemia, and parasite DNA genotyping by nested PCR.

Results: From 371 recruited women, 27 were positive to microscopic malaria parasitaemia while 223 women harboured submicroscopic parasitaemia. All msp-1 block 2 family allelic types (K1, MAD20 and RO33) were observed in all the three compartments of blood, with K1 being most abundant. K1 (with 12, 10, and 08 alleles in the peripheral, placental, and cord blood respectively) and MAD20 (with 10, 09, and 06 alleles in the respective blood compartments) were more diverse compared to RO33 (with 06, 06, and 05 alleles in the respective blood compartments). From the 250 women with microscopic and/or submicroscopic parasitaemia, 38.5%, 30.5%, and 18.4% of peripheral, placental and cord blood sample, respectively, harboured more than one parasite clone, and polyclonal infection was more prevalent in the peripheral blood of women with microscopic parasitaemia (54.5%) compared to those with submicroscopic parasitaemia (36.7%) (p = 0.02). The mean multiplicity of genotypes per microscopic and submicroscopic infection in peripheral blood was higher in anemic women (2.00 ± 0.23 and 1.66 ± 0.11, respectively) than in non-anaemic women (1.36 ± 0.15 and 1.45 ± 0.06, respectively) (p = 0.03 and 0.06). In logistic regression, women infected with four or more clones of the parasite were 9.4 times more likely to be anaemic than women harbouring one clone. This association, however, was only observed with the peripheral blood infection. No significant association was found between the MOI and low birth weight or preterm delivery.

Conclusions: These results indicate that the genetic diversity of P. falciparum is high in pregnant women from southern Brazzaville in the Republic of Congo, and the multiplicity of the infection might represent a risk for maternal anaemia.

Keywords: Genetic diversity; Malaria; Msp-1; Pregnancy; Republic of Congo.

MeSH terms

  • Congo / epidemiology
  • Cross-Sectional Studies
  • Female
  • Humans
  • Infant, Newborn
  • Placenta / parasitology
  • Plasmodium falciparum* / genetics
  • Pregnancy
  • Pregnancy Outcome*