[go: up one dir, main page]

Vai al contenuto

Teorema ëd Pitàgora

Da Wikipedia.
Revision al 06:21, 10 mar 2013 ëd Addbot (discussion | contribussion) (Bot: Migrating 90 interwiki links, now provided by Wikidata on d:q11518 (translate me))
(dif.) ←Version pì veja | vardé la version corenta (dif.) | Revision pì neuve→ (dif.)
Vos an lenga piemontèisa
Për amprende a dovré 'l sistema dle parlà locaj ch'a varda sì.
Na rapresentassion gràfica dij quadrà dont s'agiss ant ël teorema

Ël teorema ëd Pitàgora a fortiss che, ant un triàngol retàngol, la mzura dël quadrà costruì an sl'ipotenusa a l'é la soma dij quadrà costruì an sij catet.

Costa relassion as peul ëscriv-se ëd fasson algébrica tanme

,

anté che a,b a son le longheur dij doi catet e c a l'é cola dl'ipotenusa.
A l'é an arfletend ansima a costa ugualiansa che Pierre de Fermat a l'ha fortì sò avosà teorema.

A val ëdcò l'anvers dël teorema ëd Pitàgora: si la soma dij quadrà ëd doe bande d'un triàngol a l'é ugual al quadrà dla tersa banda, antlora ël triàngol a l'é retàngol.

Bele che ël teorema a pija sò nòm dal matemàtich Pitàgora (anviron 540 aGC), soa dimostrassion a armonta ai babilonèis dël temp ëd Hammurabi, pì 'd mila agn anans Pitàgora. Miraco l'atribussion a Pitàgora a l'é dovùa al fàit che la prima documentassion ëd na dimostrassion ëscrita a ven da soa scòla; tutun ës teorema e soe dimostrassion a comparisso an continent, colture e sécoj diferent.

Generalisassion

[modìfica | modifiché la sorgiss]

A-i son vàire generalisassion dël teorema ëd Pitàgora:

  1. La fórmola dël cosen.
  2. Ël teorema ëd Tolomé ch'a fortiss che ant un quadrilàter sìclich convess ABCD,

(si ABCD a l'é un retàngol, i l'oma ël teorema ëd Pitàgora).

  1. Për tut triàngol con bande x,y,z taj che opura , a-i é un nùmer p tal che .