[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a362901 -id:a362901
     Sort: relevance | references | number | modified | created      Format: long | short | data
Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of fixed-point-free endofunctions on an n-set with k endofunctions.
+10
4
1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 9, 6, 1, 1, 0, 1, 22, 162, 13, 1, 1, 0, 1, 63, 3935, 4527, 40, 1, 1, 0, 1, 136, 81015, 1497568, 172335, 100, 1, 1, 0, 1, 302, 1369101, 384069023, 883538845, 7861940, 291, 1, 1, 0, 1, 580, 19601383, 78954264778, 3450709120355, 725601878962, 416446379, 797, 1
OFFSET
0,14
COMMENTS
Isomorphism is up to permutation of the elements of the n-set. Each endofunction can be considered to be a loopless digraph where each node has out-degree 1.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
EXAMPLE
Array begins:
==============================================================
n/k| 0 1 2 3 4 5 ...
---+----------------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 1 0 0 0 0 0 ...
2 | 1 1 1 1 1 1 ...
3 | 1 2 9 22 63 136 ...
4 | 1 6 162 3935 81015 1369101 ...
5 | 1 13 4527 1497568 384069023 78954264778 ...
6 | 1 40 172335 883538845 3450709120355 10786100835304758 ...
...
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(v, m) = {prod(i=1, #v, my(g=gcd(v[i], m), e=v[i]/g); (sum(j=1, #v, my(t=v[j]); if(e%(t/gcd(t, m))==0, t)) - 1)^g)}
T(n, k) = {if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q) * polcoef(exp(sum(m=1, k, K(q, m)*x^m/m, O(x*x^k))), k)); s/n!)}
CROSSREFS
Columns k=0..3 are A000012, A001373, A362900, A362901.
Main diagonal is A362902.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 10 2023
STATUS
approved

Search completed in 0.007 seconds