Displaying 1-5 of 5 results found.
page
1
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k, n).
+10
11
1, 2, 6, 21, 75, 273, 1009, 3770, 14202, 53846, 205216, 785460, 3017106, 11624580, 44905518, 173863965, 674506059, 2621371005, 10203609597, 39773263035, 155231706951, 606554343495, 2372544034143, 9289131196485, 36401388236461
FORMULA
Conjecture: -3*(n+1)*(7*n-2)*a(n) +6*(7*n+5)*(2*n-1)*a(n-1) -(n+1)*(7*n-2)*a(n-2) +2*(7*n+5)*(2*n-1)*a(n-3)=0. - R. J. Mathar, Nov 28 2014
MATHEMATICA
Table[Sum[Binomial[2n-3k, n], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Harvey P. Dale, Jan 13 2015 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-3*k, n)); \\ Seiichi Manyama, Jan 28 2023
EXTENSIONS
Erroneous title changed by Paul Barry, Apr 14 2010
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-k,n-3*k).
+10
11
1, 2, 6, 21, 77, 288, 1090, 4159, 15964, 61557, 238221, 924597, 3597290, 14024341, 54770176, 214218966, 838959762, 3289471537, 12910910288, 50720828034, 199422778415, 784672001097, 3089564308849, 12172411084432, 47984843655991, 189260578353602
FORMULA
G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3 * c(x)^5) ), where c(x) is the g.f. of A000108.
D-finite with recurrence n*a(n) +2*(-7*n+6)*a(n-1) +2*(36*n-61)*a(n-2) +4*(-41*n+103)*a(n-3) +(161*n-530)*a(n-4) +(-71*n+278)*a(n-5) +6*(2*n-9)*a(n-6)=0. - R. J. Mathar, Mar 12 2023
a(n) = [x^n] 1/(((1-x)^2-x^3) * (1-x)^(n-1)). - Seiichi Manyama, Apr 09 2024
MAPLE
add(binomial(2*n-k, n-3*k), k=0..n/3) ;
end proc:
MATHEMATICA
a[n_] := Sum[Binomial[2*n - k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-k, n-3*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^5)))
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k,n-3*k).
+10
7
1, 2, 6, 21, 73, 262, 960, 3562, 13347, 50393, 191406, 730555, 2799622, 10765092, 41513751, 160490906, 621805286, 2413738744, 9385635299, 36550685683, 142534105563, 556514122937, 2175296066129, 8511430278018, 33334299581686, 130662787246407
FORMULA
G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3 * c(x)) ), where c(x) is the g.f. of A000108.
D-finite with recurrence 2*n*a(n) +4*(-2*n+1)*a(n-1) +(-3*n+4)*a(n-2) +2*(6*n-11)*a(n-3) +(n-4)*a(n-4) +2*(-n+9)*a(n-5) +4*(-2*n+1)*a(n-6) +(-n+4)*a(n-7) +2*(2*n-9)*a(n-8)=0. - R. J. Mathar, Mar 12 2023
MAPLE
add(binomial(2*n-5*k, n-3*k), k=0..n/3) ;
end proc:
MATHEMATICA
a[n_] := Sum[Binomial[2*n - 5*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-5*k, n-3*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-2*x^3/(1+sqrt(1-4*x)))))
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-6*k,n-3*k).
+10
7
1, 2, 6, 21, 72, 258, 945, 3504, 13128, 49565, 188260, 718560, 2753721, 10588860, 40835160, 157871241, 611669250, 2374441380, 9233006541, 35956933050, 140220970200, 547490880981, 2140055896770, 8373651697800, 32795094564081, 128550662334522
FORMULA
G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3) ).
D-finite with recurrence n*a(n) +2*(-2*n+1)*a(n-1) -n*a(n-3) +2*(2*n-1)*a(n-4)=0. - R. J. Mathar, Mar 12 2023
MAPLE
add(binomial(2*n-6*k, n-3*k), k=0..n/3) ;
end proc:
MATHEMATICA
a[n_] := Sum[Binomial[2*n - 6*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-6*k, n-3*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3)))
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,n-3*k).
+10
4
1, 2, 6, 21, 78, 297, 1145, 4447, 17358, 68001, 267141, 1051767, 4148281, 16385111, 64797543, 256515731, 1016368078, 4030114641, 15990813773, 63485616391, 252175202373, 1002136689071, 3984080489263, 15844839393411, 63036297959993, 250855287692647
FORMULA
G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3 * c(x)^6) ), where c(x) is the g.f. of A000108.
D-finite with recurrence n*a(n) +2*(-4*n+3)*a(n-1) +8*(2*n-3)*a(n-2) +3*(-n+2)=0. - R. J. Mathar, Mar 12 2023
a(n) = [x^n] 1/(((1-x)^3-x^3) * (1-x)^(n-2)). - Seiichi Manyama, Apr 10 2024
MAPLE
add(binomial(2*n, n-3*k), k=0..n/3) ;
end proc:
MATHEMATICA
a[n_] := Sum[Binomial[2*n, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n, n-3*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^6)))
Search completed in 0.006 seconds
|