[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a360151 -id:a360151
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k, n).
+10
11
1, 2, 6, 21, 75, 273, 1009, 3770, 14202, 53846, 205216, 785460, 3017106, 11624580, 44905518, 173863965, 674506059, 2621371005, 10203609597, 39773263035, 155231706951, 606554343495, 2372544034143, 9289131196485, 36401388236461
OFFSET
0,2
LINKS
FORMULA
G.f.: 2/(4*x^2+sqrt(1-4*x)*(3*x+1)-5*x+1). - Vladimir Kruchinin, May 24 2014
Conjecture: -3*(n+1)*(7*n-2)*a(n) +6*(7*n+5)*(2*n-1)*a(n-1) -(n+1)*(7*n-2)*a(n-2) +2*(7*n+5)*(2*n-1)*a(n-3)=0. - R. J. Mathar, Nov 28 2014
a(n) ~ 2^(2*n+3) / (7*sqrt(Pi*n)). - Vaclav Kotesovec, Jan 28 2023
a(n) = [x^n] 1/((1-x^3) * (1-x)^(n+1)). - Seiichi Manyama, Apr 08 2024
MATHEMATICA
Table[Sum[Binomial[2n-3k, n], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Harvey P. Dale, Jan 13 2015 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-3*k, n)); \\ Seiichi Manyama, Jan 28 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 23 2005
EXTENSIONS
Erroneous title changed by Paul Barry, Apr 14 2010
Name corrected by Seiichi Manyama, Jan 28 2023
STATUS
approved
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-k,n-3*k).
+10
11
1, 2, 6, 21, 77, 288, 1090, 4159, 15964, 61557, 238221, 924597, 3597290, 14024341, 54770176, 214218966, 838959762, 3289471537, 12910910288, 50720828034, 199422778415, 784672001097, 3089564308849, 12172411084432, 47984843655991, 189260578353602
OFFSET
0,2
FORMULA
G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3 * c(x)^5) ), where c(x) is the g.f. of A000108.
a(n) ~ 2^(2*n+1) / sqrt(Pi*n). - Vaclav Kotesovec, Jan 28 2023
D-finite with recurrence n*a(n) +2*(-7*n+6)*a(n-1) +2*(36*n-61)*a(n-2) +4*(-41*n+103)*a(n-3) +(161*n-530)*a(n-4) +(-71*n+278)*a(n-5) +6*(2*n-9)*a(n-6)=0. - R. J. Mathar, Mar 12 2023
a(n) = [x^n] 1/(((1-x)^2-x^3) * (1-x)^(n-1)). - Seiichi Manyama, Apr 09 2024
MAPLE
A360150 := proc(n)
add(binomial(2*n-k, n-3*k), k=0..n/3) ;
end proc:
seq(A360150(n), n=0..70) ; # R. J. Mathar, Mar 12 2023
MATHEMATICA
a[n_] := Sum[Binomial[2*n - k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-k, n-3*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^5)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 28 2023
STATUS
approved
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k,n-3*k).
+10
7
1, 2, 6, 21, 73, 262, 960, 3562, 13347, 50393, 191406, 730555, 2799622, 10765092, 41513751, 160490906, 621805286, 2413738744, 9385635299, 36550685683, 142534105563, 556514122937, 2175296066129, 8511430278018, 33334299581686, 130662787246407
OFFSET
0,2
FORMULA
G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3 * c(x)) ), where c(x) is the g.f. of A000108.
a(n) ~ 2^(2*n+5) / (31 * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 28 2023
D-finite with recurrence 2*n*a(n) +4*(-2*n+1)*a(n-1) +(-3*n+4)*a(n-2) +2*(6*n-11)*a(n-3) +(n-4)*a(n-4) +2*(-n+9)*a(n-5) +4*(-2*n+1)*a(n-6) +(-n+4)*a(n-7) +2*(2*n-9)*a(n-8)=0. - R. J. Mathar, Mar 12 2023
MAPLE
A360152 := proc(n)
add(binomial(2*n-5*k, n-3*k), k=0..n/3) ;
end proc:
seq(A360152(n), n=0..70) ; # R. J. Mathar, Mar 12 2023
MATHEMATICA
a[n_] := Sum[Binomial[2*n - 5*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-5*k, n-3*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-2*x^3/(1+sqrt(1-4*x)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 28 2023
STATUS
approved
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-6*k,n-3*k).
+10
7
1, 2, 6, 21, 72, 258, 945, 3504, 13128, 49565, 188260, 718560, 2753721, 10588860, 40835160, 157871241, 611669250, 2374441380, 9233006541, 35956933050, 140220970200, 547490880981, 2140055896770, 8373651697800, 32795094564081, 128550662334522
OFFSET
0,2
FORMULA
G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3) ).
a(n) ~ 2^(2*n + 6) / (63 * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 28 2023
a(n)-a(n-3) = A000984(n). - R. J. Mathar, Mar 12 2023
D-finite with recurrence n*a(n) +2*(-2*n+1)*a(n-1) -n*a(n-3) +2*(2*n-1)*a(n-4)=0. - R. J. Mathar, Mar 12 2023
MAPLE
A360153 := proc(n)
add(binomial(2*n-6*k, n-3*k), k=0..n/3) ;
end proc:
seq(A360153(n), n=0..70) ; # R. J. Mathar, Mar 12 2023
MATHEMATICA
a[n_] := Sum[Binomial[2*n - 6*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-6*k, n-3*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3)))
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 28 2023
STATUS
approved
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,n-3*k).
+10
4
1, 2, 6, 21, 78, 297, 1145, 4447, 17358, 68001, 267141, 1051767, 4148281, 16385111, 64797543, 256515731, 1016368078, 4030114641, 15990813773, 63485616391, 252175202373, 1002136689071, 3984080489263, 15844839393411, 63036297959993, 250855287692647
OFFSET
0,2
FORMULA
G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3 * c(x)^6) ), where c(x) is the g.f. of A000108.
D-finite with recurrence n*a(n) +2*(-4*n+3)*a(n-1) +8*(2*n-3)*a(n-2) +3*(-n+2)=0. - R. J. Mathar, Mar 12 2023
a(n) = [x^n] 1/(((1-x)^3-x^3) * (1-x)^(n-2)). - Seiichi Manyama, Apr 10 2024
MAPLE
A360168 := proc(n)
add(binomial(2*n, n-3*k), k=0..n/3) ;
end proc:
seq(A360168(n), n=0..70) ; # R. J. Mathar, Mar 12 2023
MATHEMATICA
a[n_] := Sum[Binomial[2*n, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n, n-3*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^6)))
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 28 2023
STATUS
approved

Search completed in 0.006 seconds