[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360153
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-6*k,n-3*k).
7
1, 2, 6, 21, 72, 258, 945, 3504, 13128, 49565, 188260, 718560, 2753721, 10588860, 40835160, 157871241, 611669250, 2374441380, 9233006541, 35956933050, 140220970200, 547490880981, 2140055896770, 8373651697800, 32795094564081, 128550662334522
OFFSET
0,2
FORMULA
G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3) ).
a(n) ~ 2^(2*n + 6) / (63 * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 28 2023
a(n)-a(n-3) = A000984(n). - R. J. Mathar, Mar 12 2023
D-finite with recurrence n*a(n) +2*(-2*n+1)*a(n-1) -n*a(n-3) +2*(2*n-1)*a(n-4)=0. - R. J. Mathar, Mar 12 2023
MAPLE
A360153 := proc(n)
add(binomial(2*n-6*k, n-3*k), k=0..n/3) ;
end proc:
seq(A360153(n), n=0..70) ; # R. J. Mathar, Mar 12 2023
MATHEMATICA
a[n_] := Sum[Binomial[2*n - 6*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-6*k, n-3*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3)))
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 28 2023
STATUS
approved