[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a350069 -id:a350069
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A329697(A156552(n)).
+10
5
0, 0, 1, 0, 1, 0, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 3, 2, 3, 0, 3, 1, 3, 2, 3, 0, 3, 0, 3, 1, 5, 1, 3, 0, 1, 3, 3, 0, 3, 0, 4, 2, 6, 0, 4, 1, 2, 3, 4, 0, 3, 2, 4, 5, 4, 0, 4, 0, 7, 3, 4, 1, 4, 0, 5, 1, 2, 0, 3, 0, 4, 2, 4, 1, 5, 0, 4, 2, 8, 0, 3, 3, 7, 6, 4, 0, 3, 2, 6, 4, 9, 3, 4, 0, 4, 3, 2, 0, 5, 0, 5, 3
OFFSET
2,7
FORMULA
a(n) = A329697(A156552(n)) = A329697(A322993(n)).
a(n) = A329697(A342666(n)) + A342656(n).
a(p) = 0 for all primes p.
a(A003961(n)) = a(n).
PROG
(PARI)
A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res};
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A329697(f[k, 1]-1)))); };
(PARI)
\\ Version using the factorization file available at https://oeis.org/A156552/a156552.txt
v156552sigs = readvec("a156552.txt");
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A329697(f[k, 1]-1)))); };
A342651(n) = if(isprime(n), 0, my(prsig=v156552sigs[n], ps=prsig[1], es=prsig[2]); sum(i=2-(ps[1]%2), #ps, es[i]*(1+A329697(ps[i]-1)))); \\ Antti Karttunen, Jan 29 2022
CROSSREFS
Cf. A000040 (positions of 0's), A350069 (of 1's).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 18 2021
STATUS
approved

Search completed in 0.005 seconds