Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jan 29 2022 20:14:45
%S 0,0,1,0,1,0,2,1,2,0,2,0,1,1,2,0,2,0,3,2,3,0,3,1,3,2,3,0,3,0,3,1,5,1,
%T 3,0,1,3,3,0,3,0,4,2,6,0,4,1,2,3,4,0,3,2,4,5,4,0,4,0,7,3,4,1,4,0,5,1,
%U 2,0,3,0,4,2,4,1,5,0,4,2,8,0,3,3,7,6,4,0,3,2,6,4,9,3,4,0,4,3,2,0,5,0,5,3
%N a(n) = A329697(A156552(n)).
%H Antti Karttunen, <a href="/A342651/b342651.txt">Table of n, a(n) for n = 2..6381</a> (based on Hans Havermann's factorization of A156552)
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F a(n) = A329697(A156552(n)) = A329697(A322993(n)).
%F a(n) = A329697(A342666(n)) + A342656(n).
%F a(p) = 0 for all primes p.
%F a(A003961(n)) = a(n).
%o (PARI)
%o A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res};
%o A329697(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A329697(f[k,1]-1)))); };
%o A342651(n) = A329697(A156552(n));
%o (PARI)
%o \\ Version using the factorization file available at https://oeis.org/A156552/a156552.txt
%o v156552sigs = readvec("a156552.txt");
%o A329697(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A329697(f[k,1]-1)))); };
%o A342651(n) = if(isprime(n),0,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); sum(i=2-(ps[1]%2),#ps,es[i]*(1+A329697(ps[i]-1)))); \\ _Antti Karttunen_, Jan 29 2022
%Y Cf. A156552, A329697, A322993, A342652, A350067.
%Y Cf. A000040 (positions of 0's), A350069 (of 1's).
%K nonn
%O 2,7
%A _Antti Karttunen_, Mar 18 2021