[go: up one dir, main page]

login
Search: a358831 -id:a358831
     Sort: relevance | references | number | modified | created      Format: long | short | data
First differences of the binomial transform of the partition numbers (A000041).
+10
30
1, 1, 3, 8, 21, 54, 137, 344, 856, 2113, 5179, 12614, 30548, 73595, 176455, 421215, 1001388, 2371678, 5597245, 13166069, 30873728, 72185937, 168313391, 391428622, 908058205, 2101629502, 4853215947, 11183551059, 25718677187, 59030344851, 135237134812, 309274516740
OFFSET
0,3
COMMENTS
a(n) = A103446(n) for n>=1; here a(0) is set to 1 in accordance with the definition and other important generating functions.
From Gus Wiseman, Dec 12 2022: (Start)
Also the number of sequences of compositions (A133494) with weakly decreasing lengths and total sum n. For example, the a(0) = 1 through a(3) = 8 sequences are:
() ((1)) ((2)) ((3))
((11)) ((12))
((1)(1)) ((21))
((111))
((1)(2))
((2)(1))
((11)(1))
((1)(1)(1))
The case of constant lengths is A101509.
The case of strictly decreasing lengths is A129519.
The case of sequences of partitions is A141199.
The case of twice-partitions is A358831.
(End)
LINKS
FORMULA
G.f.: Product_{n>=1} (1-x)^n / ((1-x)^n - x^n).
G.f.: Sum_{n>=0} x^n * (1-x)^(n*(n-1)/2) / Product_{k=1..n} ((1-x)^k - x^k).
G.f.: Sum_{n>=0} x^(n^2) * (1-x)^n / Product_{k=1..n} ((1-x)^k - x^k)^2.
G.f.: exp( Sum_{n>=1} x^n/((1-x)^n - x^n) / n ).
G.f.: exp( Sum_{n>=1} sigma(n) * x^n/(1-x)^n / n ), where sigma(n) is the sum of divisors of n (A000203).
G.f.: Product_{n>=1} (1 + x^n/(1-x)^n)^A001511(n), where 2^A001511(n) is the highest power of 2 that divides 2*n.
a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-2) / (n*sqrt(3)). - Vaclav Kotesovec, Jun 25 2015
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + 54*x^5 + 137*x^6 + 344*x^7 +...
The g.f. equals the product:
A(x) = (1-x)/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *...
and also equals the series:
A(x) = 1 + x*(1-x)/((1-x)-x)^2 + x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2 + x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2 + x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +...
MAPLE
b:= proc(n) option remember;
add(combinat[numbpart](k)*binomial(n, k), k=0..n)
end:
a:= n-> b(n)-b(n-1):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 19 2014
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n-1, k]*PartitionsP[k+1], {k, 0, n-1}], {n, 1, 30}]}] (* Vaclav Kotesovec, Jun 25 2015 *)
PROG
(PARI) {a(n)=sum(k=0, n, (binomial(n, k)-if(n>0, binomial(n-1, k)))*numbpart(k))}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(prod(k=1, n, (1-x)^k/((1-x)^k-X^k)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(sum(m=0, n, x^m*(1-x)^(m*(m-1)/2)/prod(k=1, m, ((1-x)^k - X^k))), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(sum(m=0, n, x^(m^2)*(1-X)^m/prod(k=1, m, ((1-x)^k - x^k)^2)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(exp(sum(m=1, n+1, x^m/((1-x)^m-X^m)/m)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(exp(sum(m=1, n+1, sigma(m)*x^m/(1-X)^m/m)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(prod(k=1, n, (1 + x^k/(1-X)^k)^valuation(2*k, 2)), n)}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 29 2012
STATUS
approved
Number of hierarchical ordered partitions of partitions.
+10
29
1, 1, 3, 7, 17, 38, 87, 191, 421, 911, 1963, 4186, 8885, 18724, 39284, 82005, 170521, 353214, 729290, 1501184, 3081869, 6311404, 12896983, 26301515, 53541702, 108815626, 220824295, 447524559, 905850001, 1831526719
OFFSET
0,3
COMMENTS
Consider the "ordered partitions of partitions" as described in A055887. They are produced by introducing separators (a term used by J. Riordan) between the parts of a partition. If a partition has P parts, then it is possible to introduce 1, 2, ... P-1 separators. Let "|" denote such a separator. We just append 1,2,...,P-1 separators to each integer partition of n and subsequently form all permutation of the resulting list (which is composed of parts and separators).
There are some rules: If we do not append a separator, then we do not perform any permutation. Furthermore, we do not accept permutations which have a dangling separator in front of the integer parts or past them. E.g. the permutations [|,1,2,3] and [1,2,3,|] are forbidden. Furthermore, sequences of separators as "|,|" are forbidden.
Now we impose a further restriction on the permutations. Consider the elements between two separators. We call their number "occupation number". We just request that the occupation number of a ordered partition is monotonically decreasing (if we start from the left to the right of a permutation written in our notation). If we interpret a separator as a level, then we can speak of a hierarchy. E.g. we do not count [1,|,2,3,|,4] as a hierarchy, but we accept [1,2|,3,4] as a hierarchy. We thus speak of "hierarchically ordered partitions of partitions" for this sequence.
With the generating function f := z -> 1/(mul(1-z^i/mul(1-z^j,j=1..i), i=1..25)); we get the asymptotic expansion using the command equivalent (f(z),z,n);
The result is 3.788561346*exp(-n)^(-log(2)) + O(1/n*exp(-n)^(-log(2))). Let fas := n -> 3.788562346*exp(-n)^(-log(2)); then for n=60 we get fas(60)/A141199(60)= .4367915009e19/4344507472742893655 = 1.005387846.
In short, a(n) is the number of finite sequences of integer partitions with weakly decreasing lengths and total sum n. The case of twice-partitions is A358831. A version choosing compositions is A218482. The strictly decreasing case is A358836. For ordered set partitions we have A005651. For weakly decreasing bigomega see A358335. - Gus Wiseman, Dec 05 2022
LINKS
Thomas Wieder, The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets, Applied Mathematical Sciences, vol. 3, 2009, no. 55, 2707 - 2724. [Thomas Wieder, Nov 14 2009]
FORMULA
G.f.: 1/Product_{i>=1} (1-x^i/Product_{j=1..i} (1-x^j)). - Vladeta Jovovic, Jul 16 2008
EXAMPLE
n=1:
[1]
-------------------------
n=2:
[1, 1],
[1, "|", 1],
[2]]
-------------------------
n=3:
[1, 2],
[1, "|", 1, "|", 1],
[1, 1, 1],
[3],
[2, "|", 1],
[1, 1, "|", 1],
[1, "|", 2]
-------------------------
n=4:
[1, 1, 1, "|", 1],
[1, 1, "|", 1, 1],
[2, 2],
[1, 3],
[1, 1, 1, 1],
[1, 1, 2],
[4],
[1, "|", 1, "|", 1, "|", 1],
[1, 2, "|", 1],
[1, 1, "|", 2],
[1, 1, "|", 1, "|", 1],
[2, "|", 1, "|", 1],
[1, "|", 2, "|", 1],
[1, "|", 1, "|", 2],
[1, "|", 3],
[3, "|", 1],
[2, "|", 2].
MAPLE
A Maple program to generate these "hierarchically ordered partitions of partitions" is available on request.
An asymptotic expansion can be found using the generating function given by Vladeta Jovovic. For that purpose we use the Maple program "equivalent" from Bruno Salvy (http://ago.inria.fr/libraries/libraries.html).
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k/prod(j=1, k, 1-x^j))) \\ Seiichi Manyama, Jan 18 2022
KEYWORD
nonn
AUTHOR
Thomas Wieder, Jun 13 2008, Jun 29 2008, Jul 28 2008
EXTENSIONS
More terms from Vladeta Jovovic, Jul 16 2008
a(0)=1 prepended by Seiichi Manyama, Jan 18 2022
STATUS
approved
Number of twice-partitions of n into partitions with all different lengths.
+10
16
1, 1, 2, 4, 9, 15, 31, 53, 105, 178, 330, 555, 1024, 1693, 2991, 5014, 8651, 14242, 24477, 39864, 67078, 109499, 181311, 292764, 483775, 774414, 1260016, 2016427, 3254327, 5162407, 8285796, 13074804, 20812682, 32733603, 51717463, 80904644, 127305773, 198134675, 309677802
OFFSET
0,3
COMMENTS
A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.
EXAMPLE
The a(1) = 1 through a(5) = 15 twice-partitions:
(1) (2) (3) (4) (5)
(11) (21) (22) (32)
(111) (31) (41)
(11)(1) (211) (221)
(1111) (311)
(11)(2) (2111)
(2)(11) (11111)
(21)(1) (21)(2)
(111)(1) (22)(1)
(3)(11)
(31)(1)
(111)(2)
(211)(1)
(111)(11)
(1111)(1)
MATHEMATICA
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn], {ptn, IntegerPartitions[n]}];
Table[Length[Select[twiptn[n], UnsameQ@@Length/@#&]], {n, 0, 10}]
PROG
(PARI)
seq(n)={ local(Cache=Map());
my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n))));
my(F(m, r, b) = my(key=[m, r, b], z); if(!mapisdefined(Cache, key, &z),
z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m], k)); if(!bittest(b, k)&&c, c*self()(min(m, r-m), r-m, bitor(b, 1<<k)))));
mapput(Cache, key, z)); z);
vector(n+1, i, F(i-1, i-1, 0))
} \\ Andrew Howroyd, Dec 31 2022
CROSSREFS
The version for set partitions is A007837.
For sums instead of lengths we have A271619.
For constant instead of distinct lengths we have A306319.
The case of distinct sums also is A358832.
The version for multiset partitions of integer partitions is A358836.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A273873 counts strict trees.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 03 2022
EXTENSIONS
Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022
STATUS
approved
Number of finite sequences of distinct integer partitions with total sum n and weakly decreasing lengths.
+10
11
1, 1, 2, 6, 10, 23, 50, 95, 188, 378, 747, 1414, 2739, 5179, 9811, 18562, 34491, 64131, 118607, 218369, 400196, 731414, 1328069, 2406363, 4346152, 7819549, 14027500, 25090582, 44749372, 79586074, 141214698, 249882141, 441176493, 777107137, 1365801088, 2395427040, 4192702241
OFFSET
0,3
LINKS
EXAMPLE
The a(1) = 1 through a(4) = 10 sequences:
((1)) ((2)) ((3)) ((4))
((11)) ((21)) ((22))
((111)) ((31))
((1)(2)) ((211))
((2)(1)) ((1111))
((11)(1)) ((1)(3))
((3)(1))
((11)(2))
((21)(1))
((111)(1))
MATHEMATICA
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp], {comp, Join@@Permutations/@IntegerPartitions[n]}];
Table[Length[Select[ptnseq[n], UnsameQ@@#&&GreaterEqual@@Length/@#&]], {n, 0, 10}]
PROG
(PARI)
P(n, y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
R(n, v) = {[subst(serlaplace(p), y, 1) | p<-Vec(prod(k=1, #v, (1 + y*x^k + O(x*x^n))^v[k] ))]}
seq(n) = {my(g=P(n, y)); Vec(prod(k=1, n, Ser(R(n, Vec(polcoef(g, k, y), -n))) ))} \\ Andrew Howroyd, Dec 31 2022
CROSSREFS
This is the distinct case of A055887 with weakly decreasing lengths.
This is the distinct case is A141199.
The case of distinct lengths also is A358836.
This is the case of A358906 with weakly decreasing lengths.
A000041 counts integer partitions, strict A000009.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.
A358912 counts sequences of partitions with distinct lengths.
A358914 counts twice-partitions into distinct strict partitions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 09 2022
EXTENSIONS
Terms a(16) and beyond from Andrew Howroyd, Dec 31 2022
STATUS
approved
Number of integer partitions of n whose parts have all different numbers of prime factors (A001222).
+10
10
1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 5, 7, 9, 8, 9, 11, 11, 15, 16, 16, 18, 20, 22, 26, 28, 31, 32, 36, 40, 45, 46, 46, 50, 59, 64, 70, 75, 78, 83, 89, 94, 108, 106, 104, 120, 137, 142, 147, 150, 161, 174, 190, 200, 220, 226, 224, 248, 274, 274, 287, 301, 320, 340, 351, 361
OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..5000 (first 101 terms from Lucas A. Brown)
Lucas A. Brown, Python program.
EXAMPLE
The a(1) = 1 through a(11) = 7 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B)
(21) (31) (41) (42) (43) (62) (54) (82) (74)
(51) (61) (71) (63) (91) (65)
(421) (431) (81) (451) (83)
(621) (631) (92)
(A1)
(821)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@PrimeOmega/@#&]], {n, 0, 60}]
CROSSREFS
The weakly decreasing version is A358909 (complement A358910).
The version not counting multiplicity is A358903, weakly decreasing A358902.
For equal numbers of prime factors we have A319169, compositions A358911.
A001222 counts prime factors, distinct A001221.
A063834 counts twice-partitions.
A358836 counts multiset partitions with all distinct block sizes.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 07 2022
EXTENSIONS
a(61) and beyond from Lucas A. Brown, Dec 14 2022
STATUS
approved
Number of integer compositions of n whose parts all have the same number of prime factors, counted with multiplicity.
+10
9
1, 1, 2, 2, 3, 4, 4, 7, 9, 12, 20, 21, 39, 49, 79, 109, 161, 236, 345, 512, 752, 1092, 1628, 2376, 3537, 5171, 7650, 11266, 16634, 24537, 36173, 53377, 78791, 116224, 171598, 253109, 373715, 551434, 814066, 1201466, 1773425, 2617744, 3864050, 5703840, 8419699
OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..4000 (first 101 terms from Lucas A. Brown)
Lucas A. Brown, Python program.
EXAMPLE
The a(1) = 1 through a(8) = 9 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (23) (33) (25) (35)
(1111) (32) (222) (52) (44)
(11111) (111111) (223) (53)
(232) (233)
(322) (323)
(1111111) (332)
(2222)
(11111111)
MAPLE
b:= proc(n, i) option remember; uses numtheory; `if`(n=0, 1, add(
(t-> `if`(i<0 or i=t, b(n-j, t), 0))(bigomega(j)), j=1..n))
end:
a:= n-> b(n, -1):
seq(a(n), n=0..44); # Alois P. Heinz, Feb 12 2024
MATHEMATICA
Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n], SameQ@@PrimeOmega/@#&]], {n, 0, 10}]
CROSSREFS
The case of partitions is A319169, ranked by A320324.
The weakly decreasing version is A358335, strictly A358901.
For sequences of partitions see A358905.
A001222 counts prime factors, distinct A001221.
A011782 counts compositions.
A358902 = compositions with weakly decreasing A001221, strictly A358903.
A358909 = partitions with weakly decreasing A001222, complement A358910.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 11 2022
EXTENSIONS
a(21) and beyond from Lucas A. Brown, Dec 15 2022
STATUS
approved
Number of integer partitions of n whose parts have all different numbers of distinct prime factors (A001221).
+10
7
1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 7, 8, 7, 9, 10, 10, 10, 9, 11, 15, 14, 13, 15, 14, 14, 17, 16, 17, 17, 16, 16, 17, 17, 21, 26, 24, 23, 25, 27, 29, 32, 31, 29, 36, 36, 35, 37, 37, 42, 49, 45, 44, 50, 49, 50, 58, 55, 55, 58, 56, 58, 66, 62, 65, 75
OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 101 terms from Lucas A. Brown)
Lucas A. Brown, Python program.
EXAMPLE
The a(15) = 8 partitions are: (15), (14,1), (12,3), (12,2,1), (10,5), (10,4,1), (6,9), (8,6,1).
MAPLE
p:= proc(n) option remember; nops(ifactors(n)[2]) end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
add((t-> `if`(t<i, b(n-j, t), 0))(p(j)), j=1..n)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..68); # Alois P. Heinz, Feb 14 2024
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@PrimeNu/@#&]], {n, 0, 30}]
CROSSREFS
Counting prime factors with multiplicity gives A358901.
The weakly decreasing version is A358902, with multiplicity A358335.
A001222 counts prime factors, distinct A001221.
A116608 counts partitions by sum and number of distinct parts.
A358836 counts multiset partitions with all distinct block sizes.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 07 2022
EXTENSIONS
a(56) and beyond from Lucas A. Brown, Dec 14 2022
STATUS
approved
Number of integer compositions of n whose parts have weakly decreasing numbers of prime factors (with multiplicity).
+10
6
1, 1, 2, 3, 5, 8, 12, 19, 29, 44, 68, 100, 153, 227, 342, 509, 759, 1129, 1678, 2492, 3699, 5477, 8121, 12015, 17795, 26313, 38924, 57541, 85065, 125712, 185758, 274431, 405420, 598815, 884465, 1306165, 1928943, 2848360, 4205979, 6210289, 9169540
OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 101 terms from Lucas A. Brown)
Lucas A. Brown, Python program.
EXAMPLE
The a(0) = 1 through a(6) = 12 compositions:
() (1) (2) (3) (4) (5) (6)
(11) (21) (22) (23) (33)
(111) (31) (32) (42)
(211) (41) (51)
(1111) (221) (222)
(311) (231)
(2111) (321)
(11111) (411)
(2211)
(3111)
(21111)
(111111)
MATHEMATICA
Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n], GreaterEqual@@PrimeOmega/@#&]], {n, 0, 10}]
CROSSREFS
For lengths of partitions see A141199, compositions A218482.
The strictly decreasing case is A358901.
The version not counting multiplicity is A358902, strict A358903.
The case of partitions is A358909, complement A358910.
The case of equality is A358911, partitions A319169.
A001222 counts prime factors, distinct A001221.
A011782 counts compositions.
A063834 counts twice-partitions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 05 2022
EXTENSIONS
a(21) and beyond from Lucas A. Brown, Dec 15 2022
STATUS
approved
Number of rectangular twice-partitions of n of type (P,R,P).
+10
6
1, 1, 3, 4, 8, 8, 17, 16, 32, 34, 56, 57, 119, 102, 179, 199, 335, 298, 598, 491, 960, 925, 1441, 1256, 2966, 2026, 3726, 3800, 6488, 4566, 11726, 6843, 16176, 14109, 21824, 16688, 49507, 21638, 50286, 50394, 99408, 44584, 165129, 63262, 208853, 205109, 248150
OFFSET
0,3
COMMENTS
A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n, so these are twice-partitions of n into partitions with constant lengths and constant sums.
FORMULA
a(n) = Sum_{d|n} Sum_{j=1..n/d} A008284(n/d, j)^d for n > 0. - Andrew Howroyd, Dec 31 2022
EXAMPLE
The a(1) = 1 through a(5) = 8 twice-partitions:
(1) (2) (3) (4) (5)
(11) (21) (22) (32)
(1)(1) (111) (31) (41)
(1)(1)(1) (211) (221)
(1111) (311)
(2)(2) (2111)
(11)(11) (11111)
(1)(1)(1)(1) (1)(1)(1)(1)(1)
MATHEMATICA
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn], {ptn, IntegerPartitions[n]}];
Table[Length[Select[twiptn[n], SameQ@@Length/@#&&SameQ@@Total/@#&]], {n, 0, 10}]
PROG
(PARI)
P(n, y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(u=Vec(P(n, y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, polcoef(p, j, y)^d))))} \\ Andrew Howroyd, Dec 31 2022
CROSSREFS
This is the rectangular case of A279787.
This is the case of A306319 with constant sums.
For distinct instead of constant lengths and sums we have A358832.
The version for multiset partitions of integer partitions is A358835.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A281145 counts same-trees.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 04 2022
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Dec 31 2022
STATUS
approved
Number of integer compositions of n whose parts have weakly decreasing numbers of distinct prime factors (A001221).
+10
6
1, 1, 2, 3, 5, 8, 13, 21, 33, 53, 84, 134, 213, 338, 536, 850, 1349, 2136, 3389, 5367, 8509, 13480, 21362, 33843, 53624, 84957, 134600, 213251, 337850, 535251, 847987, 1343440, 2128372, 3371895, 5341977, 8463051, 13407689, 21241181, 33651507, 53312538, 84460690
OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..5004 (first 101 terms from Lucas A. Brown)
Lucas A. Brown, Python program.
EXAMPLE
The a(0) = 1 through a(6) = 13 compositions:
() (1) (2) (3) (4) (5) (6)
(11) (21) (22) (23) (24)
(111) (31) (32) (33)
(211) (41) (42)
(1111) (221) (51)
(311) (222)
(2111) (231)
(11111) (321)
(411)
(2211)
(3111)
(21111)
(111111)
MAPLE
p:= proc(n) option remember; nops(ifactors(n)[2]) end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
add((t-> `if`(t<=i, b(n-j, t), 0))(p(j)), j=1..n)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40); # Alois P. Heinz, Feb 14 2024
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], GreaterEqual@@PrimeNu/@#&]], {n, 0, 10}]
CROSSREFS
For lengths of partitions see A141199, compositions A218482.
The strictly decreasing case is A358903.
A001222 counts prime factors, distinct A001221.
A011782 counts compositions.
A116608 counts partitions by sum and number of distinct parts.
A334028 counts distinct parts in standard compositions.
A358836 counts multiset partitions with all distinct block sizes.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 07 2022
EXTENSIONS
a(21) and beyond from Lucas A. Brown, Dec 15 2022
STATUS
approved

Search completed in 0.010 seconds