[go: up one dir, main page]

login
A306319
Number of length-rectangular twice-partitions of n.
9
1, 1, 3, 5, 10, 14, 26, 35, 60, 82, 131, 177, 286, 376, 582, 793, 1202, 1610, 2450, 3274, 4906, 6665, 9770, 13274, 19690, 26506, 38596, 53006, 76432, 104189, 150844, 205282, 294304, 404146, 573140, 786169, 1119457, 1527554, 2155953, 2965567, 4163955, 5701816
OFFSET
0,3
COMMENTS
A twice partition of n is a sequence of integer partitions, one of each part in an integer partition of n. It is length-rectangular if all parts have the same number of parts.
EXAMPLE
The a(5) = 14 length-rectangular twice-partitions:
[5] [4 1] [3 2] [3 1 1] [2 2 1] [2 1 1 1] [1 1 1 1 1]
.
[4] [3] [2 1]
[1] [2] [1 1]
.
[3] [2]
[1] [2]
[1] [1]
.
[2]
[1]
[1]
[1]
.
[1]
[1]
[1]
[1]
[1]
MATHEMATICA
Table[Length[Join@@Table[Select[Tuples[IntegerPartitions/@ptn], SameQ@@Length/@#&], {ptn, IntegerPartitions[n]}]], {n, 20}]
CROSSREFS
Dominates A319066 (rectangular partitions of partitions), which dominates A323429 (rectangular plane partitions).
Cf. A000219, A001970, A063834 (twice-partitions), A089299, A271619, A279787 (sum-rectangular twice-partitions), A305551, A306017, A306318 (square case), A323531.
Sequence in context: A092269 A323429 A319066 * A182722 A365379 A089483
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 07 2019
STATUS
approved