[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a343874 -id:a343874
     Sort: relevance | references | number | modified | created      Format: long | short | data
Molien series of 4-dimensional representation of cyclic group of order 4 over GF(2) (not Cohen-Macaulay).
+10
17
1, 1, 3, 5, 10, 14, 22, 30, 43, 55, 73, 91, 116, 140, 172, 204, 245, 285, 335, 385, 446, 506, 578, 650, 735, 819, 917, 1015, 1128, 1240, 1368, 1496, 1641, 1785, 1947, 2109, 2290, 2470, 2670, 2870, 3091, 3311, 3553, 3795, 4060, 4324, 4612, 4900, 5213, 5525, 5863
OFFSET
0,3
COMMENTS
a(n) is the number of necklaces with 4 black beads and n white beads.
Also nonnegative integer 2 X 2 matrices with sum of elements equal to n, up to rotational symmetry.
The g.f. is Z(C_4,x), the 4-variate cycle index polynomial for the cyclic group C_4, with substitution x[i]->1/(1-x^i), i=1,...,4. Therefore by Polya enumeration a(n) is the number of cyclically inequivalent 4-necklaces whose 4 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_4,x). - Wolfdieter Lang, Feb 15 2005
REFERENCES
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 104.
E. V. McLaughlin, Numbers of factorizations in non-unique factorial domains, Senior Thesis, Allegeny College, Meadville, PA, April 2004.
FORMULA
G.f.: (1+2*x^3+x^4)/((1-x)*(1-x^2)^2*(1-x^4)) = (1-x+x^2+x^3)/((1-x)^2*(1-x^2)*(1-x^4)).
a(n) = (1/48)*(2*n^3 + 3*(-1)^n*(n + 4) + 12*n^2 + 25*n + 24 + 12*cos(n*Pi/2)). - Ralf Stephan, Apr 29 2014
G.f.: (1/4)*(1/(1-x)^4 + 1/(1-x^2)^2 + 2/(1-x^4)). - Herbert Kociemba, Oct 22 2016
a(n) = -A032801(-n), per formulae of Colin Barker (A032801) and R. Stephan (above). Also, a(n) - A032801(n+4) = (1+(-1)^signum(n mod 4))/2, i.e., (1,0,0,0,1,0,0,0,...) repeating, (offset 0). - Gregory Gerard Wojnar, Jul 09 2022
EXAMPLE
There are 10 inequivalent nonnegative integer 2 X 2 matrices with sum of elements equal to 4, up to rotational symmetry:
[0 0] [0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [0 2] [0 2] [1 1]
[0 4] [1 3] [2 2] [3 1] [1 2] [2 1] [3 0] [1 1] [2 0] [1 1].
MAPLE
1/(1-x)/(1-x^2)^2/(1-x^4)*(1+2*x^3+x^4);
seq(coeff(series(%, x, n+1), x, n), n=0..40);
MATHEMATICA
k = 4; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)
LinearRecurrence[{2, 0, -2, 2, -2, 0, 2, -1}, {1, 1, 3, 5, 10, 14, 22, 30}, 50] (* G. C. Greubel, Jan 31 2020 *)
PROG
(PARI) a(n)=if(n, ([0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 1; -1, 2, 0, -2, 2, -2, 0, 2]^n*[1; 1; 3; 5; 10; 14; 22; 30])[1, 1], 1) \\ Charles R Greathouse IV, Oct 22 2015
(PARI) my(x='x+O('x^50)); Vec((1+2*x^3+x^4)/((1-x)*(1-x^2)^2*(1-x^4))) \\ G. C. Greubel, Jan 31 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+2*x^3+x^4)/((1-x)*(1-x^2)^2*(1-x^4)) )); // G. C. Greubel, Jan 31 2020
(Sage)
def A008610_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+2*x^3+x^4)/((1-x)*(1-x^2)^2*(1-x^4)) ).list()
A008610_list(50) # G. C. Greubel, Jan 31 2020
(GAP) a:=[1, 1, 3, 5, 10, 14, 22, 30];; for n in [9..50] do a[n]:=2*a[n-1]-2*a[n-3] +2*a[n-4]-2*a[n-5]+2*a[n-7]-a[n-1]; od; a; # G. C. Greubel, Jan 31 2020
CROSSREFS
Row n=2 of A343874.
Column k=4 of A037306 and A047996.
KEYWORD
nonn,easy
EXTENSIONS
Comment and example from Vladeta Jovovic, May 18 2000
STATUS
approved
Array read by antidiagonals: T(n,k) is the number of k-colorings of an n X n grid, up to rotational symmetry.
+10
17
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 24, 140, 1, 0, 1, 5, 70, 4995, 16456, 1, 0, 1, 6, 165, 65824, 10763361, 8390720, 1, 0, 1, 7, 336, 489125, 1073758336, 211822552035, 17179934976, 1, 0, 1, 8, 616, 2521476, 38147070625, 281474993496064, 37523658921114744, 140737496748032, 1, 0
OFFSET
0,8
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023. See p. 3.
FORMULA
T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n mod 2))/4) + k^((n^2 + (n mod 2))/2))/4.
EXAMPLE
Array begins:
====================================================================
n\k | 0 1 2 3 4 5
----+---------------------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 0 1 2 3 4 5 ...
2 | 0 1 6 24 70 165 ...
3 | 0 1 140 4995 65824 489125 ...
4 | 0 1 16456 10763361 1073758336 38147070625 ...
5 | 0 1 8390720 211822552035 281474993496064 74505806274453125 ...
...
MATHEMATICA
{{1}}~Join~Table[Function[n, (k^(n^2) + 2*k^((n^2 + 3 #)/4) + k^((n^2 + #)/2))/4 &[Mod[n, 2] ] ][m - k + 1], {m, 0, 8}, {k, m + 1, 0, -1}] // Flatten (* Michael De Vlieger, Nov 30 2023 *)
PROG
(PARI) T(n, k) = (k^(n^2) + 2*k^((n^2 + 3*(n%2))/4) + k^((n^2 + (n%2))/2))/4
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 14 2021
STATUS
approved
Array read by antidiagonals: T(n,k) is the number of n X n nonnegative integer matrices with sum of elements equal to k, up to rotations and reflections.
+10
5
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 3, 1, 0, 1, 4, 11, 3, 1, 0, 1, 8, 31, 24, 6, 1, 0, 1, 10, 84, 113, 55, 6, 1, 0, 1, 16, 198, 528, 410, 99, 10, 1, 0, 1, 20, 440, 2003, 2710, 1091, 181, 10, 1, 0, 1, 29, 904, 6968, 15233, 10488, 2722, 288, 15, 1, 0, 1, 35, 1766, 21593, 75258, 82704, 34399, 5806, 461, 15, 1
OFFSET
0,13
LINKS
EXAMPLE
Array begins:
=====================================================
n\k | 0 1 2 3 4 5 6 7
----+------------------------------------------------
0 | 1 0 0 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 3 4 8 10 16 20 ...
3 | 1 3 11 31 84 198 440 904 ...
4 | 1 3 24 113 528 2003 6968 21593 ...
5 | 1 6 55 410 2710 15233 75258 331063 ...
6 | 1 6 99 1091 10488 82704 563864 3376134 ...
7 | 1 10 181 2722 34399 360676 3235551 25387944 ...
...
PROG
(PARI)
U(n, s) = {(s(1)^(n^2) + s(1)^(n%2)*(2*s(4)^(n^2\4) + s(2)^(n^2\2)) + 2*s(1)^n*s(2)^(n*(n-1)/2) + 2*(s(1)^(n%2)*s(2)^(n\2))^n )/8}
T(n, k)={polcoef(U(n, i->1/(1-x^i) + O(x*x^k)), k)}
CROSSREFS
Rows n=0..3 are A000007, A000012, A005232, A054343.
Columns 0..1 are A000012, A008805(n-1).
Cf. A054252 (binary case), A318795, A343097, A343874.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 06 2021
STATUS
approved
Number of nonnegative integer 3 X 3 matrices with sum of elements equal to n, up to rotational symmetry.
+10
2
1, 3, 13, 43, 129, 327, 761, 1619, 3238, 6098, 10974, 18930, 31550, 50930, 80030, 122666, 183999, 270525, 390755, 555205, 777287, 1073297, 1463583, 1972533, 2630044, 3471508, 4539660, 5884564, 7565868, 9652788, 12226860, 15381924
OFFSET
0,2
LINKS
FORMULA
G.f.: (x^8 - 2*x^7 + 6*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 6*x^2 - 2*x + 1)/((1 - x^4)^2*(1 - x^2)^2*(1 - x)^5).
CROSSREFS
Row n=3 of A343874.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, May 18 2000
STATUS
approved
Number of nonnegative integer 4 X 4 matrices with sum of elements equal to n, up to rotational symmetry.
+10
2
1, 4, 36, 204, 980, 3876, 13596, 42636, 122666, 326876, 817388, 1931540, 4346404, 9360540, 19390548, 38779380, 75136675, 141430680, 259292440, 463991880, 811990680, 1391975640, 2341057896, 3867821640, 6285222804, 10056336264
OFFSET
0,2
LINKS
FORMULA
G.f.: (x^16 - 4*x^15 + 28*x^14 - 12*x^13 + 76*x^12 + 60*x^11 + 196*x^10 - 44*x^9 + 422*x^8 - 44*x^7 + 196*x^6 + 60*x^5 + 76*x^4 - 12*x^3 + 28*x^2 - 4*x + 1)/ ((x - 1)^16*(x + 1)^8*(x^2 + 1)^4).
CROSSREFS
Row n=4 of A343874.
Cf. A008610.
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, May 19 2000
STATUS
approved

Search completed in 0.006 seconds