[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047937
Number of 2-colorings of an n X n grid, up to rotational symmetry.
15
1, 2, 6, 140, 16456, 8390720, 17179934976, 140737496748032, 4611686019501162496, 604462909807864344215552, 316912650057057631849169289216, 664613997892457937028364283517337600, 5575186299632655785385110159782842147536896, 187072209578355573530071668259090783437390809661440
OFFSET
0,2
COMMENTS
Cycle index = 1/4(s_1^(n^2)+ 2 s_4^floor(n^2/4)s_1^(n mod 2)+s_2^floor(n^2/2)s_1^(n mod 2)). - Geoffrey Critzer, Oct 28 2011
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023.
FORMULA
a(n) = (m^(n^2) + 2*m^((n^2 + 3*(n mod 2))/4) + m^((n^2 + (n mod 2))/2))/4, with m = 2.
EXAMPLE
a(2)=6 from
00 10 11 10 11 11
00 00 00 01 10 11
MATHEMATICA
Table[(2^(n^2)+2*2^Floor[n^2/4]*2^Mod[n, 2]+2^Floor[n^2/2]*2^Mod[n, 2])/4, {n, 0, 10}] (* Geoffrey Critzer, Oct 28 2011 *)
CROSSREFS
Column k=2 of A343095.
Cf. A054247.
Sequence in context: A368395 A090907 A159478 * A027731 A280821 A145143
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Apr 14 2021
STATUS
approved