[go: up one dir, main page]

login
Search: a344697 -id:a344697
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A344697(A108951(n)).
+20
5
1, 1, 1, 6, 1, 6, 1, 4, 72, 6, 1, 4, 1, 6, 72, 24, 1, 48, 1, 4, 72, 6, 1, 24, 2160, 6, 18, 4, 1, 48, 1, 16, 72, 6, 2160, 288, 1, 6, 72, 24, 1, 48, 1, 4, 18, 6, 1, 16, 5760, 288, 72, 4, 1, 108, 2160, 24, 72, 6, 1, 288, 1, 6, 18, 96, 2160, 48, 1, 4, 72, 288, 1, 64, 1, 6, 108, 4, 5760, 48, 1, 16, 2592, 6, 1, 288, 2160
OFFSET
1,4
PROG
(PARI)
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A344697(n) = { my(u=A001615(n)); (u/gcd(u, sigma(n))); };
CROSSREFS
Cf. A000203, A001615, A108951, A337203, A344697, A344698, A344701 (apparently positions of records).
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 26 2021
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => A344696(i) = A344696(j) and A344697(i) = A344697(j), for all i, j >= 1.
+20
1
1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 1, 5, 1, 4, 1, 2, 1, 1, 1, 3, 6, 1, 7, 2, 1, 1, 1, 8, 1, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 1, 5, 10, 6, 1, 2, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 4, 11, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 6, 2, 1, 1, 1, 5, 13, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 2, 1, 1, 1, 8, 1, 10, 4, 14, 1, 1, 1, 3, 1
OFFSET
1,4
COMMENTS
Restricted growth sequence transform of the ordered pair [A344696(n), A344697(n)].
For all i, j, A003557(i) = A003557(j) => a(i) = a(j); in other words, this sequence is a function of A003557. This follows because A344696(n) = A344696(A057521(n)), A344697(n) = A344696(A057521(n)), and A057521(n) = A064549(A003557(n)).
Apparently, A081770 gives the positions of 2's, which occur on those n where A344696(n) = 7 and A344697(n) = 6.
LINKS
FORMULA
For all n >= 1, a(n) = a(A057521(n)). [See comments]
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
Aux349574(n) = { my(s=sigma(n), u=A001615(n), g=gcd(u, s)); [s/g, u/g]; };
v349574 = rgs_transform(vector(up_to, n, Aux349574(n)));
A349574(n) = v349574[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 22 2021
STATUS
approved
a(n) = gcd(sigma(n), psi(n)), where sigma is the sum of divisors function, A000203, and psi is the Dedekind psi function, A001615.
+10
19
1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 3, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32, 108
OFFSET
1,2
COMMENTS
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 8, although a(4) = 1 and a(27) = 4. See A344702.
A more specific property holds: for prime p that does not divide n, a(p*n) = a(p) * a(n). In particular, on squarefree numbers (A005117) this sequence coincides with sigma and psi, which are multiplicative.
If prime p divides the squarefree part of n then p+1 divides a(n). (For example, 20 has square part 4 and squarefree part 5, so 5+1 divides a(20) = 6.) So a(n) = 1 only if n is square. The first square n with a(n) > 1 is a(196) = 21. See A344703.
Conjecture: the set of primes that appear in the sequence is A065091 (the odd primes). 5 does not appear as a term until a(366025) = 5, where 366025 = 5^2 * 11^4. At this point, the missing numbers less than 22 are 2, 10 and 17. 17 appears at the latest by a(17^2 * 103^16) = 17.
FORMULA
a(n) = gcd(A000203(n), A001615(n)).
For prime p, a(p^e) = (p+1)^(e mod 2).
For prime p with gcd(p, n) = 1, a(p*n) = a(p) * a(n).
a(A007913(n)) | a(n).
a(n) = gcd(A000203(n), A244963(n)) = gcd(A001615(n), A244963(n)).
a(n) = A000203(n) / A344696(n).
a(n) = A001615(n) / A344697(n).
MATHEMATICA
Table[GCD[DivisorSigma[1, n], DivisorSum[n, MoebiusMu[n/#]^2*#&]], {n, 100}] (* Giorgos Kalogeropoulos, Jun 03 2021 *)
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A344695(n) = gcd(sigma(n), A001615(n));
(Python 3.8+)
from math import prod, gcd
from sympy import primefactors, divisor_sigma
def A001615(n):
plist = primefactors(n)
return n*prod(p+1 for p in plist)//prod(plist)
def A344695(n): return gcd(A001615(n), divisor_sigma(n)) # Chai Wah Wu, Jun 03 2021
CROSSREFS
Cf. A000203, A001615, A005117, A244963, A344696, A344697, A344702, A344703 (numbers k for which a(k^2) > 1).
Subsets of range: A008864, A065091 (conjectured).
KEYWORD
nonn
AUTHOR
Antti Karttunen and Peter Munn, May 26 2021
STATUS
approved
a(n) = sigma(n) / gcd(sigma(n), A001615(n)).
+10
9
1, 1, 1, 7, 1, 1, 1, 5, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 5, 31, 1, 10, 7, 1, 1, 1, 21, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 10, 1, 5, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 65, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 5, 1, 13, 1, 7, 1, 1, 1, 21, 1, 57, 13
OFFSET
1,4
COMMENTS
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 35, although a(4) = 7 and a(27) = 10. See A344702.
FORMULA
a(n) = A000203(n) / A344695(n).
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A344696(n) = { my(u=sigma(n)); (u/gcd(u, A001615(n))); };
CROSSREFS
Cf. A000203, A001615, A005117 (positions of ones), A344695, A344697, A344698, A344702.
Cf. also A344756.
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 26 2021
STATUS
approved
Positions k where A344695(k) is not multiplicative.
+10
4
108, 196, 200, 216, 288, 432, 441, 500, 540, 588, 600, 675, 676, 756, 784, 800, 864, 882, 980, 1000, 1080, 1125, 1188, 1225, 1323, 1350, 1372, 1400, 1404, 1440, 1444, 1500, 1512, 1521, 1568, 1728, 1764, 1800, 1836, 2000, 2016, 2028, 2052, 2156, 2160, 2200, 2205, 2250, 2352, 2376, 2400, 2450, 2484, 2548, 2592, 2600
OFFSET
1,1
COMMENTS
Numbers k with a factorization into coprime x and k/x with A344695(x) * A344695(k/x) <> A344695(k). - Peter Munn, Jun 04 2021
EXAMPLE
For 108 = 4*27, A344695(108) = 8, although A344695(4) = 1 and A344695(27) = 4, and 1*4 != 8, therefore 108 is included in this sequence.
For 441 = 9*49, A344695(441) = 3, although A344695(9) = 1 and A344695(49) = 1, and 1*1 != 3, therefore 441 is included in this sequence.
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A344695(n) = gcd(sigma(n), A001615(n));
A344695mult(n) = { my(f = factor(n)); prod(k=1, #f~, A344695(f[k, 1]^f[k, 2])); };
isA344702(n) = (A344695(n)!=A344695mult(n));
CROSSREFS
Subsequence of A013929 and of A024619.
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 27 2021
STATUS
approved
a(n) = A003959(n) / gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.
+10
4
1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 9, 1, 1, 1, 81, 1, 16, 1, 9, 1, 1, 1, 9, 36, 1, 8, 9, 1, 1, 1, 27, 1, 1, 1, 144, 1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 81, 64, 36, 1, 9, 1, 8, 1, 9, 1, 1, 1, 9, 1, 1, 16, 729, 1, 1, 1, 9, 1, 1, 1, 144, 1, 1, 36, 9, 1, 1, 1, 81, 256, 1, 1, 9, 1, 1, 1, 9, 1, 16, 1, 9, 1, 1, 1, 27, 1, 64
OFFSET
1,4
COMMENTS
Not multiplicative. For example, a(196) = 192 != a(4) * a(49).
FORMULA
a(n) = A003959(n) / A348047(n) = A003959(n) / gcd(A000203(n), A003959(n)).
MATHEMATICA
f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := (m = Times @@ f @@@ FactorInteger[n]) / GCD[m, DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Oct 21 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
A348049(n) = { my(u=A003959(n)); (u/gcd(u, sigma(n))); };
CROSSREFS
Cf. A000203, A003959, A005117 (positions of 1's), A348029, A348047, A348048.
Cf. also A344697.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 21 2021
STATUS
approved
a(n) = usigma(n) / gcd(sigma(n), usigma(n)), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.
+10
4
1, 1, 1, 5, 1, 1, 1, 3, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 3, 26, 1, 7, 5, 1, 1, 1, 11, 1, 1, 1, 50, 1, 1, 1, 3, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 7, 1, 3, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 6, 1, 1, 26, 5, 1, 1, 1, 17, 82, 1, 1, 5, 1, 1, 1, 3, 1, 10, 1, 5, 1, 1, 1, 11, 1, 50, 10, 130
OFFSET
1,4
COMMENTS
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 72 = 8*9, where a(72) = 6 != 3*10 = a(8) * a(9).
FORMULA
a(n) = A034448(n) / A348503(n) = A034448(n) / gcd(A000203(n), A034448(n)).
MATHEMATICA
f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := (usigma = Times @@ f1 @@@ (fct = FactorInteger[n])) / GCD[usigma, Times @@ f2 @@@ fct]; Array[a, 100] (* Amiram Eldar, Oct 29 2021 *)
PROG
(PARI)
A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
A348505(n) = { my(u=A034448(n)); (u/gcd(u, sigma(n))); };
CROSSREFS
Cf. A000203, A005117, A034448, A048146, A063880, A348503, A348504, A348506 (positions of ones).
Cf. also A344697, A348049.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 29 2021
STATUS
approved
a(n) = A069359(n) / gcd(A003415(n), A069359(n)).
+10
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 13, 8, 1, 1, 5, 1, 7, 1, 15, 1, 5, 1, 9, 1, 1, 1, 31, 1, 1, 10, 1, 1, 1, 1, 19, 1, 1, 1, 5, 1, 1, 8, 21, 1, 1, 1, 7, 1, 1, 1, 41, 1, 1, 1, 13, 1, 31, 1, 25, 1, 1, 1, 5, 1, 9, 14, 1, 1, 1, 1, 15
OFFSET
2,11
FORMULA
a(n) = A069359(n) / A340070(n) = A069359(n) / gcd(A003415(n), A069359(n)).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A069359(n) = (n*sumdiv(n, d, isprime(d)/d)); \\ From A069359
A344757(n) = { my(u=A069359(n)); (u/gcd(u, A003415(n))); };
CROSSREFS
Cf. also A344697.
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 28 2021
STATUS
approved

Search completed in 0.009 seconds