Displaying 1-8 of 8 results found.
page
1
1, 1, 1, 6, 1, 6, 1, 4, 72, 6, 1, 4, 1, 6, 72, 24, 1, 48, 1, 4, 72, 6, 1, 24, 2160, 6, 18, 4, 1, 48, 1, 16, 72, 6, 2160, 288, 1, 6, 72, 24, 1, 48, 1, 4, 18, 6, 1, 16, 5760, 288, 72, 4, 1, 108, 2160, 24, 72, 6, 1, 288, 1, 6, 18, 96, 2160, 48, 1, 4, 72, 288, 1, 64, 1, 6, 108, 4, 5760, 48, 1, 16, 2592, 6, 1, 288, 2160
PROG
(PARI)
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
Lexicographically earliest infinite sequence such that a(i) = a(j) => A344696(i) = A344696(j) and A344697(i) = A344697(j), for all i, j >= 1.
+20
1
1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 1, 5, 1, 4, 1, 2, 1, 1, 1, 3, 6, 1, 7, 2, 1, 1, 1, 8, 1, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 1, 5, 10, 6, 1, 2, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 4, 11, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 6, 2, 1, 1, 1, 5, 13, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 2, 1, 1, 1, 8, 1, 10, 4, 14, 1, 1, 1, 3, 1
COMMENTS
Restricted growth sequence transform of the ordered pair [ A344696(n), A344697(n)].
Apparently, A081770 gives the positions of 2's, which occur on those n where A344696(n) = 7 and A344697(n) = 6.
FORMULA
For all n >= 1, a(n) = a( A057521(n)). [See comments]
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
Aux349574(n) = { my(s=sigma(n), u= A001615(n), g=gcd(u, s)); [s/g, u/g]; };
v349574 = rgs_transform(vector(up_to, n, Aux349574(n)));
CROSSREFS
Cf. A000203, A001615, A003557, A005117 (positions of 1's), A057521, A064549, A081770, A280292, A344695, A344696, A344697.
a(n) = gcd(sigma(n), psi(n)), where sigma is the sum of divisors function, A000203, and psi is the Dedekind psi function, A001615.
+10
19
1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 3, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32, 108
COMMENTS
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 8, although a(4) = 1 and a(27) = 4. See A344702.
A more specific property holds: for prime p that does not divide n, a(p*n) = a(p) * a(n). In particular, on squarefree numbers ( A005117) this sequence coincides with sigma and psi, which are multiplicative.
If prime p divides the squarefree part of n then p+1 divides a(n). (For example, 20 has square part 4 and squarefree part 5, so 5+1 divides a(20) = 6.) So a(n) = 1 only if n is square. The first square n with a(n) > 1 is a(196) = 21. See A344703.
Conjecture: the set of primes that appear in the sequence is A065091 (the odd primes). 5 does not appear as a term until a(366025) = 5, where 366025 = 5^2 * 11^4. At this point, the missing numbers less than 22 are 2, 10 and 17. 17 appears at the latest by a(17^2 * 103^16) = 17.
FORMULA
For prime p, a(p^e) = (p+1)^(e mod 2).
For prime p with gcd(p, n) = 1, a(p*n) = a(p) * a(n).
MATHEMATICA
Table[GCD[DivisorSigma[1, n], DivisorSum[n, MoebiusMu[n/#]^2*#&]], {n, 100}] (* Giorgos Kalogeropoulos, Jun 03 2021 *)
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
(Python 3.8+)
from math import prod, gcd
from sympy import primefactors, divisor_sigma
plist = primefactors(n)
return n*prod(p+1 for p in plist)//prod(plist)
a(n) = sigma(n) / gcd(sigma(n), A001615(n)).
+10
9
1, 1, 1, 7, 1, 1, 1, 5, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 5, 31, 1, 10, 7, 1, 1, 1, 21, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 10, 1, 5, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 65, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 5, 1, 13, 1, 7, 1, 1, 1, 21, 1, 57, 13
COMMENTS
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 35, although a(4) = 7 and a(27) = 10. See A344702.
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
Positions k where A344695(k) is not multiplicative.
+10
4
108, 196, 200, 216, 288, 432, 441, 500, 540, 588, 600, 675, 676, 756, 784, 800, 864, 882, 980, 1000, 1080, 1125, 1188, 1225, 1323, 1350, 1372, 1400, 1404, 1440, 1444, 1500, 1512, 1521, 1568, 1728, 1764, 1800, 1836, 2000, 2016, 2028, 2052, 2156, 2160, 2200, 2205, 2250, 2352, 2376, 2400, 2450, 2484, 2548, 2592, 2600
EXAMPLE
For 108 = 4*27, A344695(108) = 8, although A344695(4) = 1 and A344695(27) = 4, and 1*4 != 8, therefore 108 is included in this sequence.
For 441 = 9*49, A344695(441) = 3, although A344695(9) = 1 and A344695(49) = 1, and 1*1 != 3, therefore 441 is included in this sequence.
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A344695mult(n) = { my(f = factor(n)); prod(k=1, #f~, A344695(f[k, 1]^f[k, 2])); };
isA344702(n) = ( A344695(n)!=A344695mult(n));
a(n) = A003959(n) / gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.
+10
4
1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 9, 1, 1, 1, 81, 1, 16, 1, 9, 1, 1, 1, 9, 36, 1, 8, 9, 1, 1, 1, 27, 1, 1, 1, 144, 1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 81, 64, 36, 1, 9, 1, 8, 1, 9, 1, 1, 1, 9, 1, 1, 16, 729, 1, 1, 1, 9, 1, 1, 1, 144, 1, 1, 36, 9, 1, 1, 1, 81, 256, 1, 1, 9, 1, 1, 1, 9, 1, 16, 1, 9, 1, 1, 1, 27, 1, 64
COMMENTS
Not multiplicative. For example, a(196) = 192 != a(4) * a(49).
MATHEMATICA
f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := (m = Times @@ f @@@ FactorInteger[n]) / GCD[m, DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Oct 21 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
a(n) = usigma(n) / gcd(sigma(n), usigma(n)), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.
+10
4
1, 1, 1, 5, 1, 1, 1, 3, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 3, 26, 1, 7, 5, 1, 1, 1, 11, 1, 1, 1, 50, 1, 1, 1, 3, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 7, 1, 3, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 6, 1, 1, 26, 5, 1, 1, 1, 17, 82, 1, 1, 5, 1, 1, 1, 3, 1, 10, 1, 5, 1, 1, 1, 11, 1, 50, 10, 130
COMMENTS
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 72 = 8*9, where a(72) = 6 != 3*10 = a(8) * a(9).
MATHEMATICA
f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := (usigma = Times @@ f1 @@@ (fct = FactorInteger[n])) / GCD[usigma, Times @@ f2 @@@ fct]; Array[a, 100] (* Amiram Eldar, Oct 29 2021 *)
PROG
(PARI)
A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 13, 8, 1, 1, 5, 1, 7, 1, 15, 1, 5, 1, 9, 1, 1, 1, 31, 1, 1, 10, 1, 1, 1, 1, 19, 1, 1, 1, 5, 1, 1, 8, 21, 1, 1, 1, 7, 1, 1, 1, 41, 1, 1, 1, 13, 1, 31, 1, 25, 1, 1, 1, 5, 1, 9, 14, 1, 1, 1, 1, 15
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
Search completed in 0.009 seconds
|