[go: up one dir, main page]

login
A349574
Lexicographically earliest infinite sequence such that a(i) = a(j) => A344696(i) = A344696(j) and A344697(i) = A344697(j), for all i, j >= 1.
1
1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 1, 5, 1, 4, 1, 2, 1, 1, 1, 3, 6, 1, 7, 2, 1, 1, 1, 8, 1, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 1, 5, 10, 6, 1, 2, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 4, 11, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 6, 2, 1, 1, 1, 5, 13, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 2, 1, 1, 1, 8, 1, 10, 4, 14, 1, 1, 1, 3, 1
OFFSET
1,4
COMMENTS
Restricted growth sequence transform of the ordered pair [A344696(n), A344697(n)].
For all i, j, A003557(i) = A003557(j) => a(i) = a(j); in other words, this sequence is a function of A003557. This follows because A344696(n) = A344696(A057521(n)), A344697(n) = A344696(A057521(n)), and A057521(n) = A064549(A003557(n)).
Apparently, A081770 gives the positions of 2's, which occur on those n where A344696(n) = 7 and A344697(n) = 6.
LINKS
FORMULA
For all n >= 1, a(n) = a(A057521(n)). [See comments]
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
Aux349574(n) = { my(s=sigma(n), u=A001615(n), g=gcd(u, s)); [s/g, u/g]; };
v349574 = rgs_transform(vector(up_to, n, Aux349574(n)));
A349574(n) = v349574[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 22 2021
STATUS
approved