[go: up one dir, main page]

login
Search: a325261 -id:a325261
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers whose omega-sequence covers an initial interval of positive integers.
+10
7
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 82, 83, 84, 85, 86
OFFSET
1,2
COMMENTS
We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The enumeration of these partitions by sum is given by A325260.
EXAMPLE
The sequence of terms together with their omega sequences begins:
1: 31: 1 63: 3 2 2 1
2: 1 33: 2 2 1 65: 2 2 1
3: 1 34: 2 2 1 67: 1
4: 2 1 35: 2 2 1 68: 3 2 2 1
5: 1 37: 1 69: 2 2 1
6: 2 2 1 38: 2 2 1 71: 1
7: 1 39: 2 2 1 73: 1
9: 2 1 41: 1 74: 2 2 1
10: 2 2 1 43: 1 75: 3 2 2 1
11: 1 44: 3 2 2 1 76: 3 2 2 1
12: 3 2 2 1 45: 3 2 2 1 77: 2 2 1
13: 1 46: 2 2 1 79: 1
14: 2 2 1 47: 1 82: 2 2 1
15: 2 2 1 49: 2 1 83: 1
17: 1 50: 3 2 2 1 84: 4 3 2 2 1
18: 3 2 2 1 51: 2 2 1 85: 2 2 1
19: 1 52: 3 2 2 1 86: 2 2 1
20: 3 2 2 1 53: 1 87: 2 2 1
21: 2 2 1 55: 2 2 1 89: 1
22: 2 2 1 57: 2 2 1 90: 4 3 2 2 1
23: 1 58: 2 2 1 91: 2 2 1
25: 2 1 59: 1 92: 3 2 2 1
26: 2 2 1 60: 4 3 2 2 1 93: 2 2 1
28: 3 2 2 1 61: 1 94: 2 2 1
29: 1 62: 2 2 1 95: 2 2 1
MATHEMATICA
normQ[m_]:=Or[m=={}, Union[m]==Range[Max[m]]];
omseq[n_Integer]:=If[n<=1, {}, Total/@NestWhileList[Sort[Length/@Split[#]]&, Sort[Last/@FactorInteger[n]], Total[#]>1&]];
Select[Range[100], normQ[omseq[#]]&]
CROSSREFS
Positions of normal numbers (A055932) in A325248.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 16 2019
STATUS
approved
Number of integer partitions of n whose omega-sequence does not cover an initial interval of positive integers.
+10
4
0, 0, 0, 1, 1, 2, 6, 7, 12, 18, 29, 38, 58, 77, 110, 145, 198, 257, 345, 441, 576, 733, 942, 1184, 1503, 1875, 2352, 2914, 3620, 4454, 5493, 6716, 8221, 10001, 12167, 14723, 17816, 21459, 25836, 30988, 37139, 44365, 52956, 63022, 74934, 88873, 105296, 124469
OFFSET
0,6
COMMENTS
The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1).
EXAMPLE
The a(3) = 1 through a(9) = 18 partitions:
(111) (1111) (2111) (222) (421) (431) (333)
(11111) (321) (2221) (521) (432)
(2211) (4111) (2222) (531)
(3111) (22111) (3311) (621)
(21111) (31111) (5111) (3222)
(111111) (211111) (22211) (6111)
(1111111) (32111) (22221)
(41111) (32211)
(221111) (33111)
(311111) (42111)
(2111111) (51111)
(11111111) (222111)
(321111)
(411111)
(2211111)
(3111111)
(21111111)
(111111111)
MATHEMATICA
normQ[m_]:=Or[m=={}, Union[m]==Range[Max[m]]];
omseq[ptn_List]:=If[ptn=={}, {}, Length/@NestWhileList[Sort[Length/@Split[#]]&, ptn, Length[#]>1&]];
Table[Length[Select[IntegerPartitions[n], !normQ[omseq[#]]&]], {n, 0, 30}]
CROSSREFS
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325249 (sum).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 23 2019
STATUS
approved

Search completed in 0.010 seconds