OFFSET
1,1
COMMENTS
We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
EXAMPLE
The sequence of terms together with their omega sequences begins:
8: 3->1 108: 5->2->2->1 189: 4->2->2->1
16: 4->1 110: 3->3->1 190: 3->3->1
24: 4->2->2->1 112: 5->2->2->1 192: 7->2->2->1
27: 3->1 114: 3->3->1 195: 3->3->1
30: 3->3->1 120: 5->3->2->2->1 196: 4->2->1
32: 5->1 125: 3->1 200: 5->2->2->1
36: 4->2->1 128: 7->1 208: 5->2->2->1
40: 4->2->2->1 130: 3->3->1 210: 4->4->1
42: 3->3->1 135: 4->2->2->1 216: 6->2->1
48: 5->2->2->1 136: 4->2->2->1 222: 3->3->1
54: 4->2->2->1 138: 3->3->1 224: 6->2->2->1
56: 4->2->2->1 144: 6->2->2->1 225: 4->2->1
64: 6->1 152: 4->2->2->1 230: 3->3->1
66: 3->3->1 154: 3->3->1 231: 3->3->1
70: 3->3->1 160: 6->2->2->1 232: 4->2->2->1
72: 5->2->2->1 162: 5->2->2->1 238: 3->3->1
78: 3->3->1 165: 3->3->1 240: 6->3->2->2->1
80: 5->2->2->1 168: 5->3->2->2->1 243: 5->1
81: 4->1 170: 3->3->1 246: 3->3->1
88: 4->2->2->1 174: 3->3->1 248: 4->2->2->1
96: 6->2->2->1 176: 5->2->2->1 250: 4->2->2->1
100: 4->2->1 180: 5->3->2->2->1 252: 5->3->2->2->1
102: 3->3->1 182: 3->3->1 255: 3->3->1
104: 4->2->2->1 184: 4->2->2->1 256: 8->1
105: 3->3->1 186: 3->3->1 258: 3->3->1
MATHEMATICA
normQ[m_]:=Or[m=={}, Union[m]==Range[Max[m]]];
omseq[n_Integer]:=If[n<=1, {}, Total/@NestWhileList[Sort[Length/@Split[#]]&, Sort[Last/@FactorInteger[n]], Total[#]>1&]];
Select[Range[100], !normQ[omseq[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 23 2019
STATUS
approved