[go: up one dir, main page]

login
Search: a324737 -id:a324737
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of subsets of {1...n} containing all prime indices of the elements.
+10
22
1, 2, 3, 4, 7, 9, 15, 22, 43, 79, 127, 175, 343, 511, 851, 1571, 3141, 4397, 8765, 13147, 25243, 46843, 76795, 115171, 230299, 454939, 758203, 1516363, 2916079, 4356079, 8676079, 12132079, 24264157, 45000157, 73800253, 145685053, 291369853, 437054653, 728424421
OFFSET
0,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also the number of subsets of {1...n} containing no prime indices of the non-elements up to n.
LINKS
EXAMPLE
The a(0) = 1 through a(6) = 15 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{1,2} {1,2} {1,2} {1,2} {1,2}
{1,2,3} {1,4} {1,4} {1,4}
{1,2,3} {1,2,3} {1,2,3}
{1,2,4} {1,2,4} {1,2,4}
{1,2,3,4} {1,2,3,4} {1,2,6}
{1,2,3,5} {1,2,3,4}
{1,2,3,4,5} {1,2,3,5}
{1,2,3,6}
{1,2,4,6}
{1,2,3,4,5}
{1,2,3,4,6}
{1,2,3,5,6}
{1,2,3,4,5,6}
An example for n = 18 is {1,2,4,7,8,9,12,16,17,18}, whose elements have the following prime indices:
1: {}
2: {1}
4: {1,1}
7: {4}
8: {1,1,1}
9: {2,2}
12: {1,1,2}
16: {1,1,1,1}
17: {7}
18: {1,2,2}
All of these prime indices {1,2,4,7} belong to the subset, as required.
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], SubsetQ[#, PrimePi/@First/@Join@@FactorInteger/@DeleteCases[#, 1]]&]], {n, 0, 10}]
PROG
(PARI)
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n, k, pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k, b)->if(k>#p, 1, my(t=self()(k+1, b)); if(!bitnegimply(p[k], b), t+=if(bittest(d, k), self()(k+1, b+(1<<k)), t)); t))(1, 0)} \\ Andrew Howroyd, Aug 15 2019
CROSSREFS
The strict integer partition version is A324748. The integer partition version is A324753. The Heinz number version is A290822. An infinite version is A324698.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 13 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Aug 15 2019
STATUS
approved
Number of integer partitions of n containing all prime indices of their parts.
+10
17
1, 1, 1, 2, 2, 4, 5, 7, 8, 14, 16, 23, 29, 40, 49, 66, 81, 109, 133, 172, 211, 274, 332, 419, 511, 640, 775, 965, 1165, 1434, 1730, 2109, 2530, 3083, 3683, 4447, 5308, 6375, 7573, 9062, 10730, 12786, 15104, 17909, 21095, 24937, 29284, 34488, 40421, 47450
OFFSET
0,4
COMMENTS
These could be described as transitive integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The a(1) = 1 through a(8) = 8 integer partitions:
(1) (11) (21) (211) (41) (321) (421) (3221)
(111) (1111) (221) (411) (2221) (4211)
(2111) (2211) (3211) (22211)
(11111) (21111) (4111) (32111)
(111111) (22111) (41111)
(211111) (221111)
(1111111) (2111111)
(11111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], SubsetQ[#, PrimePi/@First/@Join@@FactorInteger/@DeleteCases[#, 1]]&]], {n, 0, 30}]
CROSSREFS
The subset version is A324736. The strict case is A324748. The Heinz number version is A290822. An infinite version is A324698.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 16 2019
STATUS
approved
Number of subsets of {2...n} containing no prime indices of the elements.
+10
13
1, 2, 3, 6, 10, 16, 24, 48, 84, 144, 228, 420, 648, 1080, 1800, 3600, 5760, 11136, 16704, 31104, 53568, 90624, 136896, 269952, 515712, 862080, 1708800, 3171840, 4832640, 9325440, 14890752, 29781504, 52245504, 88418304, 166017024, 331628544, 497645568, 829409280
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
EXAMPLE
The a(1) = 1 through a(6) = 16 subsets:
{} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{4} {4} {4}
{2,4} {5} {5}
{3,4} {2,4} {6}
{2,5} {2,4}
{3,4} {2,5}
{4,5} {3,4}
{2,4,5} {3,6}
{4,5}
{4,6}
{5,6}
{2,4,5}
{3,4,6}
{4,5,6}
An example for n = 20 is {4,5,6,12,17,18,19}, with prime indices:
4: {1,1}
5: {3}
6: {1,2}
12: {1,1,2}
17: {7}
18: {1,2,2}
19: {8}
None of these prime indices {1,2,3,7,8} belong to the set, as required.
MATHEMATICA
Table[Length[Select[Subsets[Range[2, n]], Intersection[#, PrimePi/@First/@Join@@FactorInteger/@#]=={}&]], {n, 10}]
PROG
(PARI)
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n-1, k, pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k, b)->if(k>#p, 1, my(t=self()(k+1, b)); if(!bitand(p[k], b), t+=if(bittest(d, k), self()(k+1, b+(1<<k)), t)); t))(1, 0)} \\ Andrew Howroyd, Aug 16 2019
CROSSREFS
The maximal case is A324763. The version for subsets of {1...n} is A324741. The strict integer partition version is A324752. The integer partition version is A324757. The Heinz number version is A324761. An infinite version is A304360.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 15 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019
STATUS
approved
Number of strict integer partitions of n containing all prime indices of the parts.
+10
10
1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 2, 3, 2, 2, 4, 3, 4, 3, 5, 6, 9, 8, 7, 8, 11, 12, 13, 15, 17, 22, 22, 20, 28, 31, 32, 36, 41, 43, 53, 53, 59, 70, 76, 77, 89, 99, 108, 124, 135, 139, 160, 172, 188, 209, 229, 243, 274, 298, 315, 353, 391, 417, 457, 496, 538, 588
OFFSET
0,10
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The first 15 terms count the following integer partitions.
1: (1)
3: (2,1)
5: (4,1)
6: (3,2,1)
7: (4,2,1)
9: (8,1)
9: (6,2,1)
10: (4,3,2,1)
11: (8,2,1)
11: (5,3,2,1)
12: (9,2,1)
12: (7,4,1)
12: (6,3,2,1)
13: (8,4,1)
13: (6,4,2,1)
14: (8,3,2,1)
14: (7,4,2,1)
15: (12,2,1)
15: (9,3,2,1)
15: (8,4,2,1)
15: (5,4,3,2,1)
An example for n = 6 is (20,18,11,5,3,2,1), with prime indices:
20: {1,1,3}
18: {1,2,2}
11: {5}
5: {3}
3: {2}
2: {1}
1: {}
All of these prime indices {1,2,3,5} belong to the partition, as required.
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&SubsetQ[#, PrimePi/@First/@Join@@FactorInteger/@DeleteCases[#, 1]]&]], {n, 0, 30}]
CROSSREFS
The subset version is A324736. The non-strict version is A324753. The Heinz number version is A290822. An infinite version is A324698.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 15 2019
STATUS
approved
Number of strict integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.
+10
8
1, 0, 1, 1, 1, 1, 2, 3, 2, 4, 4, 4, 6, 8, 8, 11, 10, 15, 16, 19, 23, 27, 28, 35, 39, 47, 50, 63, 68, 77, 91, 102, 114, 130, 147, 169, 187, 213, 237, 268, 300, 336, 380, 422, 472, 525, 587, 647, 731, 810, 895, 996, 1102, 1227, 1355, 1498, 1661, 1818, 2020, 2221
OFFSET
0,7
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The a(2) = 1 through a(17) = 15 strict integer partitions (A...H = 10...17):
2 3 4 5 6 7 8 9 A B C D E F G H
42 43 62 54 64 65 75 76 86 87 97 98
52 63 73 83 84 85 95 96 A6 A7
72 82 542 93 94 A4 A5 C4 B6
A2 A3 B3 B4 D3 C5
642 B2 C2 C3 E2 D4
643 752 D2 763 E3
652 842 654 862 F2
762 943 854
843 A42 863
852 872
A43
A52
B42
6542
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&!MemberQ[#, 1]&&!MemberQ[#, k_/; SubsetQ[#, PrimePi/@First/@FactorInteger[k]]]&]], {n, 0, 30}]
CROSSREFS
The subset version is A324739. The non-strict version is A324755. The Heinz number version is A324760. An infinite version is A324694.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 15 2019
STATUS
approved
Heinz numbers of integer partitions not containing 1 or any part whose prime indices all belong to the partition.
+10
8
1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 121, 123, 125, 127, 129, 131, 133, 137, 139
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
17: {7}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
33: {2,5}
35: {3,4}
37: {12}
39: {2,6}
41: {13}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], !MemberQ[primeMS[#], k_/; SubsetQ[primeMS[#], primeMS[k]]]&]
CROSSREFS
The subset version is A324739, with maximal case A324762. The strict integer partition version is A324750. The integer partition version is A324755. An infinite version is A324694.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 17 2019
STATUS
approved
Number of subsets of {2...n} containing no element whose prime indices all belong to the subset.
+10
6
1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 312, 624, 936, 1872, 3744, 7488, 12480, 24960, 37440, 74880, 142848, 285696, 456192, 912384, 1548288, 3096576, 5308416, 10616832, 15925248, 31850496, 51978240, 103956480, 200835072, 401670144, 771489792, 1542979584, 2314469376
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
EXAMPLE
The a(1) = 1 through a(6) = 20 subsets:
{} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{4} {4} {4}
{2,4} {5} {5}
{3,4} {2,4} {6}
{2,5} {2,4}
{3,4} {2,5}
{4,5} {2,6}
{2,4,5} {3,4}
{3,6}
{4,5}
{4,6}
{5,6}
{2,4,5}
{2,4,6}
{2,5,6}
{3,4,6}
{4,5,6}
{2,4,5,6}
MATHEMATICA
Table[Length[Select[Subsets[Range[2, n]], !MemberQ[#, k_/; SubsetQ[#, PrimePi/@First/@FactorInteger[k]]]&]], {n, 10}]
PROG
(PARI)
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n, k, pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k, b)->if(k>#p, 1, my(t=self()(k+1, b)); if(bitnegimply(p[k], b), t+=if(bittest(d, k), self()(k+1, b+(1<<k)), t)); t))(1, 0)} \\ Andrew Howroyd, Aug 16 2019
CROSSREFS
The maximal case is A324762. The case of subsets of {1...n} is A324738. The strict integer partition version is A324750. The integer partition version is A324755. The Heinz number version is A324760. An infinite version is A324694.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 14 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019
STATUS
approved

Search completed in 0.007 seconds