[go: up one dir, main page]

login
Search: a324739 -id:a324739
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of subsets of {1...n} containing no element > 1 whose prime indices all belong to the subset.
+10
13
1, 2, 3, 5, 8, 13, 26, 42, 72, 120, 232, 376, 752, 1128, 2256, 4512, 8256, 13632, 27264, 42048, 82944, 158976, 313344, 497664, 995328, 1700352, 3350016, 5815296, 11630592, 17491968, 34983936, 56954880, 108933120, 210788352, 418258944, 804667392, 1609334784
OFFSET
0,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
EXAMPLE
The a(0) = 1 through a(6) = 26 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{1,3} {4} {4} {4}
{1,3} {5} {5}
{2,4} {1,3} {6}
{3,4} {1,5} {1,3}
{2,4} {1,5}
{2,5} {1,6}
{3,4} {2,4}
{4,5} {2,5}
{2,4,5} {2,6}
{3,4}
{3,6}
{4,5}
{4,6}
{5,6}
{1,3,6}
{1,5,6}
{2,4,5}
{2,4,6}
{2,5,6}
{3,4,6}
{4,5,6}
{2,4,5,6}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], !MemberQ[#, k_/; SubsetQ[#, PrimePi/@First/@FactorInteger[k]]]&]], {n, 0, 10}]
PROG
(PARI)
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n, k, if(k==1, 1, pset(k))), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k, b)->if(k>#p, 1, my(t=self()(k+1, b)); if(bitnegimply(p[k], b), t+=if(bittest(d, k), self()(k+1, b+(1<<k)), t)); t))(1, 0)} \\ Andrew Howroyd, Aug 16 2019
CROSSREFS
The maximal case is A324744. The case of subsets of {2...n} is A324739. The strict integer partition version is A324749. The integer partition version is A324754. The Heinz number version is A324759. An infinite version is A324694.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 13 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019
STATUS
approved
Number of integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.
+10
9
1, 0, 1, 1, 2, 1, 4, 3, 5, 6, 10, 7, 16, 14, 23, 23, 35, 34, 53, 54, 75, 80, 112, 115, 160, 169, 223, 244, 315, 339, 442, 478, 604, 664, 832, 910, 1131, 1245, 1524, 1689, 2054, 2263, 2743, 3039, 3634, 4042, 4809, 5343, 6326, 7035, 8276, 9217, 10795, 12011
OFFSET
0,5
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
For example, (6,2) is such a partition because the prime indices of 6 are {1,2}, which do not all belong to the partition. On the other hand, (5,3) is not such a partition because the prime indices of 5 are {3}, and 3 belongs to the partition.
EXAMPLE
The a(2) = 1 through a(10) = 10 integer partitions (A = 10):
(2) (3) (4) (5) (6) (7) (8) (9) (A)
(22) (33) (43) (44) (54) (55)
(42) (52) (62) (63) (64)
(222) (422) (72) (73)
(2222) (333) (82)
(522) (433)
(442)
(622)
(4222)
(22222)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], !MemberQ[#, k_/; SubsetQ[#, PrimePi/@First/@If[k==1, {}, FactorInteger[k]]]]&]], {n, 0, 30}]
CROSSREFS
The subset version is A324739, with maximal case A324762. The strict case is A324750. The Heinz number version is A324760. An infinite version is A324694.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 16 2019
STATUS
approved
Number of strict integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.
+10
8
1, 0, 1, 1, 1, 1, 2, 3, 2, 4, 4, 4, 6, 8, 8, 11, 10, 15, 16, 19, 23, 27, 28, 35, 39, 47, 50, 63, 68, 77, 91, 102, 114, 130, 147, 169, 187, 213, 237, 268, 300, 336, 380, 422, 472, 525, 587, 647, 731, 810, 895, 996, 1102, 1227, 1355, 1498, 1661, 1818, 2020, 2221
OFFSET
0,7
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The a(2) = 1 through a(17) = 15 strict integer partitions (A...H = 10...17):
2 3 4 5 6 7 8 9 A B C D E F G H
42 43 62 54 64 65 75 76 86 87 97 98
52 63 73 83 84 85 95 96 A6 A7
72 82 542 93 94 A4 A5 C4 B6
A2 A3 B3 B4 D3 C5
642 B2 C2 C3 E2 D4
643 752 D2 763 E3
652 842 654 862 F2
762 943 854
843 A42 863
852 872
A43
A52
B42
6542
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&!MemberQ[#, 1]&&!MemberQ[#, k_/; SubsetQ[#, PrimePi/@First/@FactorInteger[k]]]&]], {n, 0, 30}]
CROSSREFS
The subset version is A324739. The non-strict version is A324755. The Heinz number version is A324760. An infinite version is A324694.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 15 2019
STATUS
approved
Heinz numbers of integer partitions not containing 1 or any part whose prime indices all belong to the partition.
+10
8
1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 121, 123, 125, 127, 129, 131, 133, 137, 139
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
17: {7}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
33: {2,5}
35: {3,4}
37: {12}
39: {2,6}
41: {13}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], !MemberQ[primeMS[#], k_/; SubsetQ[primeMS[#], primeMS[k]]]&]
CROSSREFS
The subset version is A324739, with maximal case A324762. The strict integer partition version is A324750. The integer partition version is A324755. An infinite version is A324694.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 17 2019
STATUS
approved
Number of maximal subsets of {2...n} containing no element whose prime indices all belong to the subset.
+10
8
1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 8, 8, 16, 16, 16, 16, 16, 16, 32, 32, 40, 40, 52, 52, 64, 64, 72, 72, 144, 144, 176, 176, 200, 200, 232, 232, 464, 464, 464, 464, 536, 536, 1072, 1072, 1072, 1072, 2144, 2144, 2400, 2400, 2400, 2400, 4800, 4800, 4800, 4800, 4800
OFFSET
1,3
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
EXAMPLE
The a(2) = 1 through a(9) = 6 maximal subsets:
{2} {2} {2,4} {3,4} {3,4,6} {3,4,6} {3,4,6,8} {2,4,5,6,8}
{3} {3,4} {2,4,5} {2,4,5,6} {3,6,7} {3,6,7,8} {2,5,6,7,8}
{2,4,5,6} {2,4,5,6,8} {3,4,6,8,9}
{2,5,6,7} {2,5,6,7,8} {3,6,7,8,9}
{4,5,6,8,9}
{5,6,7,8,9}
MATHEMATICA
maxim[s_]:=Complement[s, Last/@Select[Tuples[s, 2], UnsameQ@@#&&SubsetQ@@#&]];
Table[Length[maxim[Select[Subsets[Range[2, n]], !MemberQ[#, k_/; SubsetQ[#, PrimePi/@First/@FactorInteger[k]]]&]]], {n, 10}]
PROG
(PARI)
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n, k, pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
my(ismax(b)=for(k=1, #p, if(!bittest(b, k) && bitnegimply(p[k], b), my(e=bitor(b, 1<<k), f=0); for(j=k+1, #p, if(bittest(b, j) && !bitnegimply(p[j], e), f=1; break)); if(!f, return(0)) )); 1);
my(recurse(k, b)=if(k>#p, ismax(b), my(f=bitnegimply(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<<k)))));
recurse(1, 0)} \\ Andrew Howroyd, Aug 27 2019
CROSSREFS
The non-maximal version is A324739.
The version for subsets of {1...n} is A324744.
An infinite version is A324694.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 17 2019
EXTENSIONS
Terms a(16) and beyond from Andrew Howroyd, Aug 27 2019
STATUS
approved

Search completed in 0.005 seconds