[go: up one dir, main page]

login
Search: a300783 -id:a300783
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of symmetrically-distinct supercells (sublattices) of the fcc and bcc lattices (n is the "volume factor" of the supercell).
+10
11
1, 2, 3, 7, 5, 10, 7, 20, 14, 18, 11, 41, 15, 28, 31, 58, 21, 60, 25, 77, 49, 54, 33, 144, 50, 72, 75, 123, 49, 158, 55, 177, 97, 112, 99, 268, 75, 136, 129, 286, 89, 268, 97, 249, 218, 190, 113, 496, 146, 280, 203, 333, 141, 421, 207, 476, 247, 290, 171, 735
OFFSET
1,2
COMMENTS
The number of fcc/bcc supercells (sublattices) as a function of n (volume factor) is equivalent to the sequence A001001. But many of these sublattices are symmetrically equivalent. The current sequence lists those that are symmetrically distinct.
Is this the same as A045790? - R. J. Mathar, Apr 28 2009
This sequence also gives number of sublattices of index n for the diamond structure - see Hanany, Orlando & Reffert, sec. 6.3 (they call it the tetrahedral lattice). Indeed: the diamond structure consists of two interpenetrating fcc lattices, and all sites of any sublattice should belong to the same fcc lattice because every sublattice is inversion-symmetric. - Andrey Zabolotskiy, Mar 18 2018
LINKS
J. Davey, A. Hanany and R. K. Seong, Counting Orbifolds, J. High Energ. Phys., 2010, 10; arXiv:1002.3609 [hep-th], 2010.
Amihay Hanany, Domenico Orlando, and Susanne Reffert, Sublattice counting and orbifolds, J. High Energ. Phys., 2010 (2010), 51, arXiv.org:1002.2981 [hep-th], 2010.
Gus L. W. Hart and Rodney W. Forcade, Algorithm for generating derivative structures, Phys. Rev. B 77, 224115 (2008), DOI: 10.1103/PhysRevB.77.224115.
Materials Simulation Group at Brigham Young University, Derivative structure enumeration library.
Kohei Shinohara, Atsuto Seko, Takashi Horiyama, Masakazu Ishihata, Junya Honda and Isao Tanaka, Enumeration of nonequivalent substitutional structures using advanced data structure of binary decision diagram, J. Chem. Phys. 153, 104109 (2020); preprint: Derivative structure enumeration using binary decision diagram, arXiv:2002.12603 [physics.comp-ph], 2020.
Andrey Zabolotskiy, Coweight lattice A^*_n and lattice simplices, arXiv:2003.10251 [math.CO], 2020.
PROG
(Python)
def dc(f, *r): # Dirichlet convolution of multiple sequences
if not r:
return f
return lambda n: sum(f(d)*dc(*r)(n//d) for d in range(1, n+1) if n%d == 0)
def fin(*a): # finite sequence
return lambda n: 0 if n > len(a) else a[n-1]
def per(*a): # periodic sequences
return lambda n: a[n%len(a)]
u, N, N2 = lambda n: 1, lambda n: n, lambda n: n**2
def a(n): # Hanany, Orlando & Reffert, sec. 6.3
return (dc(u, N, N2)(n) + 9*dc(fin(1, -1, 0, 4), u, u, N)(n)
+ 8*dc(fin(1, 0, -1, 0, 0, 0, 0, 0, 3), u, u, per(0, 1, -1))(n)
+ 6*dc(fin(1, -1, 0, 2), u, u, per(0, 1, 0, -1))(n))//24
print([a(n) for n in range(1, 300)])
# Andrey Zabolotskiy, Mar 18 2018
KEYWORD
nonn
AUTHOR
Gus Hart (gus_hart(AT)byu.edu), Apr 23 2009
EXTENSIONS
Terms a(20) and beyond from Andrey Zabolotskiy, Mar 18 2018
STATUS
approved
Number of symmetrically distinct sublattices (supercells, superlattices, HNFs) of the simple cubic lattice of index n.
+10
4
1, 3, 3, 9, 5, 13, 7, 24, 14, 23, 11, 49, 15, 33, 31, 66, 21, 70, 25, 89, 49, 61, 33, 162, 50, 81, 75, 137, 49, 177, 55, 193, 97, 123, 99, 296, 75, 147, 129, 312, 89, 291, 97, 269, 218, 203, 113, 534, 146, 302, 203, 357, 141, 451, 207, 508, 247, 307, 171, 789
OFFSET
1,2
PROG
(Python)
# see A159842 for the definition of dc, fin, per, u, N, N2
def a(n): # from DeCross's slides
return (dc(u, N, N2)(n) + 6*dc(fin(1, -1, 0, 4), u, u, N)(n)
+ 3*dc(fin(1, 3), u, u, N)(n)
+ 8*dc(fin(1, 0, -1, 0, 0, 0, 0, 0, 3), u, u, per(0, 1, -1))(n)
+ 6*dc(fin(1, 1), u, u, per(0, 1, 0, -1))(n))//24
print([a(n) for n in range(1, 300)])
# Andrey Zabolotskiy, Sep 02 2019
KEYWORD
nonn
AUTHOR
Andrey Zabolotskiy, Mar 12 2018
EXTENSIONS
Terms a(11) and beyond from Andrey Zabolotskiy, Sep 02 2019
STATUS
approved
Number of symmetrically distinct sublattices (supercells, superlattices, HNFs) of the tetragonal lattice of index n.
+10
3
1, 5, 5, 17, 9, 29, 13, 51, 28, 53, 25, 115, 33, 81, 73, 153, 51, 176, 61, 219, 121, 161, 85, 403, 126, 213, 188, 353, 129, 473, 145, 487, 257, 335, 261, 776, 201, 405, 345, 815, 243, 801, 265, 731, 584, 569, 313, 1407, 398, 838, 559, 975, 393, 1256, 573, 1375
OFFSET
1,2
PROG
(Python)
# see A159842 for the definition of dc, fin, per, u, N, N2
def a(n):
return (dc(u, N, N2)(n) + 2*dc(fin(1, -1, 0, 4), u, u, N)(n)
+ 3*dc(fin(1, 3), u, u, N)(n)
+ 2*dc(fin(1, 1), u, u, per(0, 1, 0, -1))(n)) // 8
print([a(n) for n in range(1, 300)])
# Andrey Zabolotskiy, Jan 31 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrey Zabolotskiy, Mar 12 2018
EXTENSIONS
Terms a(11) and beyond from Andrey Zabolotskiy, Jan 31 2020
STATUS
approved

Search completed in 0.008 seconds