# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a159842 Showing 1-1 of 1 %I A159842 #41 Apr 06 2024 20:30:41 %S A159842 1,2,3,7,5,10,7,20,14,18,11,41,15,28,31,58,21,60,25,77,49,54,33,144, %T A159842 50,72,75,123,49,158,55,177,97,112,99,268,75,136,129,286,89,268,97, %U A159842 249,218,190,113,496,146,280,203,333,141,421,207,476,247,290,171,735 %N A159842 Number of symmetrically-distinct supercells (sublattices) of the fcc and bcc lattices (n is the "volume factor" of the supercell). %C A159842 The number of fcc/bcc supercells (sublattices) as a function of n (volume factor) is equivalent to the sequence A001001. But many of these sublattices are symmetrically equivalent. The current sequence lists those that are symmetrically distinct. %C A159842 Is this the same as A045790? - _R. J. Mathar_, Apr 28 2009 %C A159842 This sequence also gives number of sublattices of index n for the diamond structure - see Hanany, Orlando & Reffert, sec. 6.3 (they call it the tetrahedral lattice). Indeed: the diamond structure consists of two interpenetrating fcc lattices, and all sites of any sublattice should belong to the same fcc lattice because every sublattice is inversion-symmetric. - _Andrey Zabolotskiy_, Mar 18 2018 %H A159842 Andrey Zabolotskiy, Table of n, a(n) for n = 1..1000 %H A159842 J. Davey, A. Hanany and R. K. Seong, Counting Orbifolds, J. High Energ. Phys., 2010, 10; arXiv:1002.3609 [hep-th], 2010. %H A159842 Amihay Hanany, Domenico Orlando, and Susanne Reffert, Sublattice counting and orbifolds, J. High Energ. Phys., 2010 (2010), 51, arXiv.org:1002.2981 [hep-th], 2010. %H A159842 Gus L. W. Hart and Rodney W. Forcade, Algorithm for generating derivative structures, Phys. Rev. B 77, 224115 (2008), DOI: 10.1103/PhysRevB.77.224115. %H A159842 Materials Simulation Group at Brigham Young University, Derivative structure enumeration library. %H A159842 Kohei Shinohara, Atsuto Seko, Takashi Horiyama, Masakazu Ishihata, Junya Honda and Isao Tanaka, Enumeration of nonequivalent substitutional structures using advanced data structure of binary decision diagram, J. Chem. Phys. 153, 104109 (2020); preprint: Derivative structure enumeration using binary decision diagram, arXiv:2002.12603 [physics.comp-ph], 2020. %H A159842 Andrey Zabolotskiy, Coweight lattice A^*_n and lattice simplices, arXiv:2003.10251 [math.CO], 2020. %H A159842 Index entries for sequences related to sublattices %H A159842 Index entries for sequences related to f.c.c. lattice %H A159842 Index entries for sequences related to b.c.c. lattice %o A159842 (Python) %o A159842 def dc(f, *r): # Dirichlet convolution of multiple sequences %o A159842 if not r: %o A159842 return f %o A159842 return lambda n: sum(f(d)*dc(*r)(n//d) for d in range(1, n+1) if n%d == 0) %o A159842 def fin(*a): # finite sequence %o A159842 return lambda n: 0 if n > len(a) else a[n-1] %o A159842 def per(*a): # periodic sequences %o A159842 return lambda n: a[n%len(a)] %o A159842 u, N, N2 = lambda n: 1, lambda n: n, lambda n: n**2 %o A159842 def a(n): # Hanany, Orlando & Reffert, sec. 6.3 %o A159842 return (dc(u, N, N2)(n) + 9*dc(fin(1, -1, 0, 4), u, u, N)(n) %o A159842 + 8*dc(fin(1, 0, -1, 0, 0, 0, 0, 0, 3), u, u, per(0, 1, -1))(n) %o A159842 + 6*dc(fin(1, -1, 0, 2), u, u, per(0, 1, 0, -1))(n))//24 %o A159842 print([a(n) for n in range(1, 300)]) %o A159842 # _Andrey Zabolotskiy_, Mar 18 2018 %Y A159842 Cf. A045790. %Y A159842 Cf. A001001. %Y A159842 Cf. A003051, A145393, A145391, A145398, A300782, A300783, A300784. %Y A159842 Cf. A173824, A173877, A173878. %K A159842 nonn %O A159842 1,2 %A A159842 Gus Hart (gus_hart(AT)byu.edu), Apr 23 2009 %E A159842 Terms a(20) and beyond from _Andrey Zabolotskiy_, Mar 18 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE