[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a300751 -id:a300751
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x + 3*y + 5*z a positive square, where x,y,z,w are nonnegative integers such that 3*x or y or z is a square.
+10
11
1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 4, 2, 1, 5, 5, 2, 1, 2, 2, 2, 1, 4, 5, 2, 1, 4, 7, 1, 2, 5, 3, 2, 1, 3, 5, 4, 2, 8, 5, 1, 3, 5, 6, 1, 2, 4, 8, 5, 4, 2, 4, 4, 2, 6, 5, 5, 2, 1, 6, 4, 1, 8, 9, 6, 2, 3, 4, 1, 2, 6, 8, 5, 4, 5, 8, 2, 1
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n = 1,2,3,....
This is stronger than the author's 1-3-5 conjecture in A271518. See also A300751 for a similar conjecture stronger than the 1-3-5 conjecture.
In 2020, A. Machiavelo, R. Reis and N. Tsopanidis verified a(n) > 0 for n up to 1.05*10^11. - Zhi-Wei Sun, Oct 06 2020
LINKS
António Machiavelo, Rogério Reis, and Nikolaos Tsopanidis, Report on Zhi-Wei Sun's "1-3-5 conjecture" and some of its refinements, arXiv:2005.13526 [math.NT], 2020.
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(71) = 1 since 71 = 3^2 + 1^2 + 6^2 + 5^2 with 1 = 1^2 and 3 + 3*1 + 5*6 = 6^2.
a(248) = 1 since 248 = 10^2 + 2^2 + 0^2 + 12^2 with 0 = 0^2 and 10 + 3*2 + 5*0 = 4^2.
a(263) = 1 since 263 = 13^2 + 2^2 + 9^2 + 3^2 with 9 = 3^2 and 13 + 3*2 + 5*9 = 8^2.
a(808) = 1 since 808 = 12^2 + 14^2 + 18^2 + 12^2 with 3*12 = 6^2 and 12 + 3*14 + 5*18 = 12^2.
a(1288) = 1 since 1288 = 12^2 + 18^2 + 26^2 + 12^2 with 3*12 = 6^2 and 12 + 3*18 + 5*26 = 14^2.
a(3544) = 1 since 3544 = 14^2 + 34^2 + 16^2 + 44^2 with 16 = 4^2 and 14 + 3*34 + 5*16 = 14^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[(SQ[3(m^2-3y-5z)]||SQ[y]||SQ[z])&&SQ[n-(m^2-3y-5z)^2-y^2-z^2], r=r+1], {m, 1, (35n)^(1/4)}, {y, 0, Min[m^2/3, Sqrt[n]]}, {z, 0, Min[(m^2-3y)/5, Sqrt[n-y^2]]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 11 2018
STATUS
approved
Number of ways to write n as x^2 + y^2 + z^2 + w^2, where w is a positive integer and x,y,z are nonnegative integers for which x or y or z is a square and (12*x)^2 + (15*y)^2 + (20*z)^2 is also a square.
+10
8
1, 3, 1, 1, 6, 1, 1, 3, 2, 8, 2, 2, 7, 2, 2, 1, 8, 6, 2, 8, 1, 3, 1, 1, 9, 8, 4, 3, 7, 3, 3, 3, 6, 9, 4, 4, 7, 5, 1, 8, 8, 4, 3, 3, 11, 2, 1, 1, 4, 11, 3, 8, 8, 4, 4, 2, 3, 8, 4, 2, 8, 3, 4, 1, 15, 9, 3, 9, 3, 5, 2, 6, 10, 11, 5, 3, 5, 6, 2, 6
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 16^k*m with k = 0,1,2,... and m = 1, 3, 4, 6, 7, 21, 23, 24, 39, 47, 86, 95, 344, 651, 764.
By the author's 2017 JNT paper, each n = 0,1,2,... can be written as the sum of a fourth power and three squares.
See also A300792 for two similar conjectures.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(6) = 1 since 6 = 0^2 + 1^2 + 1^2 + 2^2 with 0 = 0^2 and (12*0)^2 + (15*1)^2 + (20*1)^2 = 25^2.
a(7) = 1 since 7 = 1^2 + 2^2 + 1^2 + 1^2 with 1 = 1^2 and (12*1)^2 + (15*2)^2 + (20*1)^2 = 38^2.
a(21) = 1 since 21 = 4^2 + 0^2 + 1^2 + 2^2 with 4 = 2^2 and (12*4)^2 + (15*0)^2 + (20*1)^2 = 52^2.
a(39) = 1 since 39 = 5^2 + 2^2 + 1^2 + 3^2 with 1 = 1^2 and (12*5)^2 + (15*2)^2 + (20*1)^2 = 70^2.
a(344) = 1 since 344 = 0^2 + 10^2 + 10^2 + 12^2 with 0 = 0^2 and (12*0)^2 + (15*10)^2 + (20*10)^2 = 250^2.
a(764) = 1 since 764 = 7^2 + 3^2 + 25^2 + 9^2 with 25 = 5^2 and (12*7)^2 + (15*3)^2 + (20*25)^2 = 509^2.
a(8312) = 2 since 8312 = 42^2 + 36^2 + 34^2 + 64^2 with 36 = 6^2 and (12*42)^2 + (15*36)^2 + (20*34)^2 = 1004^2, and 8312 = 66^2 + 16^2 + 44^2 + 42^2 with 16 = 4^2 and (12*66)^2 + (15*16)^2 + (20*44)^2 = 1208^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[(SQ[x]||SQ[y]||SQ[z])&&SQ[(12x)^2+(15y)^2+(20z)^2]&&SQ[n-x^2-y^2-z^2], r=r+1], {x, 0, Sqrt[n-1]}, {y, 0, Sqrt[n-1-x^2]}, {z, 0, Sqrt[n-1-x^2-y^2]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 12 2018
STATUS
approved
Number of ways to write n as x^2 + y^2 + z^2 + w^2, where w is a positive integer and x,y,z are nonnegative integers such that x or y or z is a square and 9*x^2 + 16*y^2 + 24*z^2 is also a square.
+10
8
1, 2, 1, 2, 4, 1, 2, 2, 2, 6, 2, 3, 5, 1, 4, 1, 5, 7, 4, 5, 1, 5, 2, 1, 9, 6, 5, 3, 4, 7, 2, 2, 6, 7, 3, 5, 7, 4, 4, 6, 6, 4, 5, 3, 9, 4, 2, 1, 4, 11, 5, 9, 5, 6, 4, 1, 9, 7, 3, 6, 5, 4, 4, 2, 14, 4, 6, 5, 2, 8, 2, 7, 9, 5, 5, 4, 3, 8, 1, 4
OFFSET
1,2
COMMENTS
Conjecture 1: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 16^k*m with k = 0,1,2,... and m = 1, 3, 6, 14, 21, 24, 56, 79, 119, 143, 248, 301, 383, 591, 728, 959, 1223, 1751, 2311, 6119.
Conjecture 2: Any positive integer n can be written as x^2 + y^2 + z^2 + w^2, where w is a positive integer and x,y,z are nonnegative integers such that x or y or z is a square and 36*x^2 + 40*y^2 + 45*z^2 is also a square.
See also A300791 for a similar conjecture.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(6) = 1 since 6 = 1^2 + 1^2 + 0^2 + 2^2 with 1 = 1^2 and 9*1^2 + 16*1^2 + 24*0^2 = 5^2.
a(14) = 1 since 14 = 1^2 + 0^2 + 3^2 + 2^2 with 1 = 1^2 and 9*1^2 + 16*0^2 + 24*3^2 = 15^2.
a(728) = 1 since 728 = 10^2 + 0^2 + 12^2 + 22^2 with 0 = 0^2 and 9*10^2 + 16*0^2 + 24*12^2 = 66^2.
a(959) = 1 since 959 = 25^2 + 18^2 + 3^2 + 1^2 with 25 = 5^2 and 9*25^2 + 16*18^2 + 24*3^2 = 105^2.
a(1751) = 1 since 1751 = 19^2 + 25^2 + 18^2 + 21^2 with 25 = 5^2 and 9*19^2 + 16*25^2 + 24*18^2 = 145^2.
a(2311) = 1 since 2311 = 1^2 + 41^2 + 23^2 + 10^2 with 1 = 1^2 and 9*1^2 + 16*41^2 + 24*23^2 = 199^2.
a(6119) = 1 since 6119 = 1^2 + 5^2 + 3^2 + 78^2 with 1 = 1^2 and 9*1^2 + 16*5^2 + 24*3^2 = 25^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[(SQ[x]||SQ[y]||SQ[z])&&SQ[9x^2+16y^2+24z^2]&&SQ[n-x^2-y^2-z^2], r=r+1], {x, 0, Sqrt[n-1]}, {y, 0, Sqrt[n-1-x^2]}, {z, 0, Sqrt[n-1-x^2-y^2]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 12 2018
STATUS
approved
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x or 2*y or z is a square and (12*x)^2 + (21*y)^2 + (28*z)^2 is also a square.
+10
6
1, 4, 4, 2, 5, 6, 2, 2, 4, 5, 7, 1, 3, 7, 2, 3, 5, 7, 7, 2, 6, 1, 2, 2, 2, 11, 7, 3, 3, 8, 5, 1, 4, 5, 9, 4, 6, 8, 6, 4, 7, 9, 3, 3, 2, 9, 2, 1, 3, 6, 16, 5, 9, 7, 6, 5, 1, 5, 9, 4, 4, 7, 5, 5, 5, 17, 6, 4, 7, 3, 6, 3, 6, 11, 11, 4, 3, 1, 8, 2, 6
OFFSET
0,2
COMMENTS
Conjecture 1: a(n) > 0 for all n = 0,1,2,....
Conjecture 2: Any positive integer can be written as x^2 + y^2 + z^2 + w^2 with w a positive integer and x,y,z nonnegative integers such that x or y or z is a square and 144*x^2 + 505*y^2 + 720*z^2 is also a square.
By the author's 2017 JNT paper, each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that x (or 2*x) is a square.
In 2016, the author conjectured in A271510 that each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and y >= z such that (3*x)^2 + (4*y)^2 + (12*z)^2 is a square.
See also A300791 and A300792 for similar conjectures.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(11) = 1 since 11 = 0^2 + 1^2 + 1^2 + 3^2 with 0 = 0^2 and (12*0)^2 + (21*1)^2 + (28*1)^2 = 35^2.
a(56) = 1 since 56 = 4^2 + 6^2 + 2^2 + 0^2 with 4 = 2^2 and (12*4)^2 + (21*6)^2 + (28*2)^2 = 146^2.
a(77) = 1 since 77 = 4^2 + 0^2 + 5^2 + 6^2 with 4 = 2^2 and (12*4)^2 + (21*0)^2 + (28*5)^2 = 148^2.
a(184) = 1 since 184 = 12^2 + 2^2 + 0^2 + 6^2 with 0 = 0^2 and (12*12)^2 + (21*2)^2 + (28*0)^2 = 150^2.
a(599) = 1 since 599 = 21^2 + 11^2 + 1^2 + 6^2 with 1 = 1^2 and (12*21)^2 + (21*11)^2 + (28*1)^2 = 343^2.
a(7836) = 1 since 7836 = 38^2 + 18^2 + 68^2 + 38^2 with 2*18 = 6^2 and (12*38)^2 + (21*18)^2 + (28*68)^2 = 1994^2.
a(15096) = 1 since 15096 = 16^2 + 6^2 + 52^2 + 110^2 with 16 = 4^2 and (12*16)^2 + (21*6)^2 + (28*52)^2 = 1474^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[(SQ[x]||SQ[2y]||SQ[z])&&SQ[(12x)^2+(21y)^2+(28z)^2]&&SQ[n-x^2-y^2-z^2], r=r+1], {x, 0, Sqrt[n]}, {y, 0, Sqrt[n-x^2]}, {z, 0, Sqrt[n-x^2-y^2]}]; tab=Append[tab, r], {n, 0, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 13 2018
STATUS
approved
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with (3*x)^2 + (4*y)^2 + (12*z)^2 a square , where w is a positive integer and x,y,z are nonnegative integers such that z or 2*z or 3*z is a square.
+10
5
1, 3, 1, 2, 6, 1, 2, 3, 2, 7, 2, 2, 7, 1, 5, 2, 7, 9, 3, 6, 2, 3, 4, 1, 9, 7, 3, 4, 5, 7, 2, 3, 5, 6, 3, 4, 7, 3, 8, 6, 7, 6, 4, 3, 7, 3, 2, 2, 4, 13, 5, 8, 6, 5, 3, 1, 8, 8, 3, 6, 5, 1, 11, 2, 16, 5, 4, 8, 1, 8, 2, 7, 11, 7, 5, 4, 2, 13, 2, 6
OFFSET
1,2
COMMENTS
Conjecture 1: a(n) > 0 for all n > 0. Moreover, any positive integer can be written as x^2 + y^2 + z^2 + w^2 with (3*x)^2 + (4*y)^2 + (12*z)^2 a square, where w is a positive integer and x,y,z are nonnegative integers for which one of z, z/2, z/3 is a square and z/2 (or z/3) is a power of 4 (including 1).
Conjecture 2: Each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with (3*x)^2 + (4*y)^2 + (12*z)^2 a square, where x,y,z,w are nonnegative integers for which x or z is a square or y = 2^k for some k = 0,1,2,....
Conjecture 3. Let a,b,c be positive integers with a <= b <= c and gcd(a,b,c) = 1. If each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that (a*x)^2 + (b*y)^2 + (c*z)^2 is a square, then (a,b,c) must be among the three triples (3,4,12), (12,15,20) and (12,21,28).
We have verified Conjectures 1 and 2 for n up to 5*10^5 and 10^6 respectively.
See also A300791 and A300844 for similar conjectures.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(6) = 1 since 6 = 1^2 + 1^2 + 0^2 + 2^2 with 0 = 0^2 and (3*1)^2 + (4*1)^2 + (12*0)^2 = 5^2.
a(14) = 1 since 14 = 3^2 + 0^2 + 1^2 + 2^2 with 1 = 1^2 and (3*3)^2 + (4*0)^2 + (12*1)^2 = 15^2.
a(69) = 1 since 69 = 0^2 + 8^2 + 2^2 + 1^2 with 2*2 = 2^2 and (3*0)^2 + (4*8)^2 + (12*2)^2 = 40^2.
a(671) = 1 since 671 = 18^2 + 17^2 + 3^2 + 7^2 with 3*3 = 3^2 and (3*18)^2 + (4*17)^2 + (12*3)^2 = 94^2.
a(1175) = 1 since 1175 = 30^2 + 5^2 + 9^2 + 13^2 with 9 = 3^2 and (3*30)^2 + (4*5)^2 + (12*9)^2 = 142^2.
a(12151) = 1 since 12151 = 50^2 + 71^2 + 49^2 + 47^2 with 49 = 7^2 and (3*50)^2 + (4*71)^2 + (12*49)^2 = 670^2.
a(16204) = 1 since 16204 = 90^2 + 90^2 + 0^2 + 2^2 with 0 = 0^2 and (3*90)^2 + (4*90)^2 + (12*0)^2 = 450^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[SQ[z]||SQ[2z]||SQ[3z], Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(3x)^2+(4y)^2+(12z)^2], r=r+1], {x, 0, Sqrt[n-1-z^2]}, {y, 0, Sqrt[n-1-x^2-z^2]}]], {z, 0, Sqrt[n-1]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 15 2018
STATUS
approved
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x >= y >= 0 <= z <= w such that x^2 + 23*y^2 = 2^k*m^3 for some k = 0,1,2 and m = 1,2,3,....
+10
4
1, 1, 1, 1, 3, 3, 1, 1, 3, 3, 2, 2, 2, 4, 2, 1, 3, 5, 3, 5, 5, 4, 3, 3, 3, 5, 3, 3, 4, 6, 2, 1, 4, 3, 4, 5, 3, 4, 2, 3, 6, 5, 2, 4, 6, 4, 2, 2, 3, 6, 3, 3, 4, 6, 4, 4, 5, 4, 4, 5, 2, 4, 4, 1, 7, 8, 2, 7, 8, 5, 3, 5, 5, 7, 4, 5, 6, 5, 2, 5
OFFSET
1,5
COMMENTS
Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 2^k (k = 0,1,2,...), 3, 7, 115, 151, 219, 267, 1151, 1367.
We have verified a(n) > 0 for all n = 1..10^8.
See also A301304 and A301314 for similar conjectures.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(2) = 1 since 2 = 1^2 + 0^2 + 0^2 + 1^2 with 1 + 23*0 = 1^3.
a(4) = 1 since 4 = 2^2 + 0^2 + 0^2 + 0^2 with 2^2 + 23*0 = 2^2*1^3.
a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 2^2 + 23*1^2 = 3^3.
a(48) = 2 since 48 = 4^2 + 0^2 + 4^2 + 4^2 = 6^2 + 2^2 + 2^2 + 2^2 with 4^2 + 23*0^2 = 2*2^3 and 6^2 + 23*2^2 = 2*4^3.
a(115) = 1 since 115 = 3^2 + 3^2 + 4^2 + 9^2 with 3^2 + 23*3^2 = 6^3.
a(267) = 1 since 267 = 3^2 + 1^2 + 1^2 + 16^2 with 3^2 + 23*1^2 = 2^2*2^3.
a(1151) = 1 since 1151 = 7^2 + 3^2 + 2^2 + 33^2 with 7^2 + 23*3^2 = 2^2*4^3.
a(1367) = 1 since 1367 = 17^2 + 5^2 + 18^2 + 27^2 with 17^2 + 23*5^2 = 2^2*6^3.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
QQ[n_]:=n>0&&(CQ[n]||CQ[n/2]||CQ[n/4]);
tab={}; Do[r=0; Do[If[QQ[x^2+23y^2], Do[If[SQ[n-x^2-y^2-z^2], r=r+1], {z, 0, Sqrt[(n-x^2-y^2)/2]}]], {y, 0, Sqrt[n/2]}, {x, y, Sqrt[n-y^2]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 17 2018
STATUS
approved
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x >= y >= 0 <= z <= w such that x^2 + 7*y^2 = 2^k*m for some k = 0,1,2 and m = 1,2,3,....
+10
4
1, 2, 2, 2, 2, 3, 1, 2, 3, 4, 3, 4, 2, 3, 2, 2, 4, 5, 3, 4, 4, 2, 1, 3, 2, 6, 5, 4, 3, 4, 2, 2, 6, 5, 4, 6, 3, 3, 3, 4, 6, 8, 2, 5, 5, 3, 2, 4, 4, 5, 6, 5, 5, 4, 3, 3, 6, 5, 2, 6, 3, 4, 3, 2, 6, 10, 3, 5, 8, 1, 2, 5, 5, 6, 5, 6, 5, 3, 1, 4
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0.
We have verified this for n up to 10^8.
See also A301303 and A301314 for similar conjectures.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(79) = 1 since 79 = 5^2 + 1^2 + 2^2 + 7^2 with 5^2 + 7*1^2 = 2^2*2^3.
a(323) = 1 since 323 = 3^2 + 1^2 + 12^2 + 13^2 with 3^2 + 7*1^2 = 2*2^3.
a(646) = 1 since 646 = 22^2 + 11^2 + 4^2 + 5^2 with 22^2 + 7*11^2 = 11^3.
a(815) = 1 since 815 = 9^2 + 5^2 + 15^2 + 22^2 with 9^2 + 7*5^2 = 2^2*4^3.
a(1111) = 1 since 1111 = 1^2 + 1^2 + 22^2 + 25^2 with 1^2 + 7*1^2 = 2^3.
a(2822) = 1 since 2822 = 2^2 + 0^2 + 3^2 + 53^2 with 2^2 + 7*0^2 = 2^2*1^3.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
QQ[n_]:=n>0&&(CQ[n]||CQ[n/2]||CQ[n/4]);
tab={}; Do[r=0; Do[If[QQ[x^2+7y^2], Do[If[SQ[n-x^2-y^2-z^2], r=r+1], {z, 0, Sqrt[(n-x^2-y^2)/2]}]], {y, 0, Sqrt[n/2]}, {x, y, Sqrt[n-y^2]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 17 2018
STATUS
approved
Number of ways to write n as x^2 + y^2 + z^2 + w^2, where w is a positive integer and x,y,z are nonnegative integers such that x + 3*y + 9*z = 2^k*m^3 for some k,m = 0,1,2,....
+10
4
1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 4, 4, 1, 2, 1, 3, 1, 1, 4, 2, 4, 1, 2, 3, 1, 1, 4, 2, 4, 3, 2, 5, 4, 3, 3, 7, 3, 2, 3, 1, 3, 1, 3, 6, 7, 2, 4, 7, 3, 1, 5, 2, 6, 3, 2, 7, 7, 1, 4, 9, 3, 4, 2, 5, 5, 4, 5, 4, 6, 1, 5, 5, 1, 2
OFFSET
1,5
COMMENTS
Conjecture 1: a(n) > 0 for all n > 0.
Conjecture 2: Any positive integer can be written as x^2 + y^2 + z^2 + w^2, where x is a positive integer and y,z,w are nonnegative integers such that 2*x + 7*y = 2^k*m^3 for some k = 0,1,2 and m = 1,2,3,....
We have verified a(n) > 0 for all n = 1..10^7.
See also A301303 and A301304 for similar conjectures.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(7) = 1 since 7 = 1^2 + 2^2 + 1^2 + 1^2 with 1 + 3*2 + 9*1 = 2*2^3.
a(19) = 1 since 19 = 4^2 + 1^2 + 1^2 + 1^2 with 4 + 3*1 + 9*1 = 2*2^3.
a(46) = 1 since 46 = 0^2 + 6^2 + 1^2 + 3^2 with 0 + 3*6 + 9*1 = 3^3.
a(79) = 1 since 79 = 2^2 + 7^2 + 1^2 + 5^2 with 2 + 3*7 + 9*1 = 2^2*2^3.
a(125) = 1 since 125 = 2^2 + 0^2 + 0^2 + 11^2 with 2 + 3*0 + 9*0 = 2*1^3.
a(736) = 1 since 736 = 0^2 + 24^2 + 4^2 + 12^2 with 0 + 3*24 + 9*4 = 2^2*3^3.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
QQ[n_]:=CQ[n]||CQ[n/2]||CQ[n/4];
tab={}; Do[r=0; Do[If[QQ[x+3y+9z]&&SQ[n-x^2-y^2-z^2], r=r+1], {x, 0, Sqrt[n-1]}, {y, 0, Sqrt[n-1-x^2]}, {z, 0, Sqrt[n-1-x^2-y^2]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 18 2018
STATUS
approved
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with 4*x - 3*y a square, where x,y,z,w are nonnegative integers with z <= w such that 10*x or y is a square.
+10
1
1, 2, 3, 2, 2, 2, 2, 1, 1, 2, 4, 3, 2, 1, 2, 2, 2, 3, 5, 3, 4, 2, 1, 1, 1, 4, 6, 5, 2, 3, 3, 1, 3, 4, 5, 4, 5, 3, 3, 2, 2, 6, 6, 2, 1, 4, 2, 2, 2, 2, 9, 6, 6, 3, 4, 3, 1, 4, 3, 4, 4, 4, 3, 3, 2, 6, 9, 4, 5, 4, 4, 1, 2, 4, 7, 9, 2, 3, 3, 1, 2
OFFSET
0,2
COMMENTS
Conjecture 1: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 16^k*m with k = 0,1,2,... and m = 0, 7, 8, 13, 22, 23, 24, 31, 44, 56, 71, 79, 88, 109, 120, 152, 184, 472, 1912, 6008, 9080.
Conjecture 2: Each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with 3*x - y twice a square, where x,y,z,w are nonnegative integers such that 5*x or y is a square.
By the author's 2017 JNT paper, any nonnegative integer can be written as the sum of a fourth power and three squares.
See also A281976, A300666, A300667, A300708 and A300712 for similar conjectures.
a(n) > 0 for all n = 0..10^8. Also, Conjecture 2 holds for all n = 0..10^8. - Zhi-Wei Sun, Oct 05 2020
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(22) = 1 since 22 = 1^2 + 1^2 + 2^2 + 4^2 with 1 = 1^2 and 4*1 - 3*1 = 1^2.
a(23) = 1 since 23 = 3^2 + 1^2 + 2^2 + 3^2 with 1 = 1^2 and 4*3 - 3*1 = 3^2.
a(109) = 1 since 109 = 0^2 + 0^2 + 3^2 + 10^2 with 0 = 0^2 and 4*0 - 3*0 = 0^2.
a(184) = 1 since 184 = 10^2 + 8^2 + 2^2 + 4^2 with 10*10 = 10^2 and 4*10 - 3*8 = 4^2.
a(6008) = 1 since 6008 = 12^2 + 16^2 + 42^2 + 62^2 with 16 = 4^2 and 4*12 - 3*16 = 0^2.
a(9080) = 1 since 9080 = 10^2 + 12^2 + 0^2 + 94^2 with 10*10 = 10^2 and 4*10 - 3*12 = 2^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[Mod[m^2+3y, 4]==0&&(SQ[10(m^2+3y)/4]||SQ[y]), Do[If[SQ[n-((m^2+3y)/4)^2-y^2-z^2], r=r+1], {z, 0, Sqrt[Max[0, (n-((m^2+3y)/4)^2-y^2)/2]]}]], {m, 0, 2n^(1/4)}, {y, 0, 4/5*Sqrt[n-m^4/16]}]; tab=Append[tab, r], {n, 0, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 12 2018
STATUS
approved
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z nonnegative integers and w a positive integer such that x*(y+3*z) is a cube or half a cube and y <= z <= w if x = 0.
+10
1
1, 2, 2, 2, 3, 2, 2, 2, 3, 5, 2, 3, 4, 1, 1, 1, 5, 7, 3, 3, 5, 3, 1, 4, 6, 7, 4, 3, 6, 1, 4, 2, 6, 7, 1, 5, 4, 4, 2, 5, 5, 4, 5, 2, 8, 4, 2, 1, 4, 7, 5, 7, 6, 4, 3, 3, 4, 7, 2, 1, 5, 3, 2, 2, 7, 10, 6, 4, 6, 3, 4, 5, 9, 8, 5, 4, 2, 6, 2, 3
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0.
We have verified this for all n = 1..3*10^6.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(14) = 1 since 14 = 0^2 + 1^2 + 2^2 + 3^2 with 0*(1+3*2) = 0^3.
a(15) = 1 since 15 = 2^2 + 1^2 + 1^2 + 3^2 with 2*(1+3*1) = 2^3.
a(16) = 1 since 16 = 0^2 + 0^2 + 0^2 + 4^2 with 0*(0+3*0) = 0^3.
a(60) = 1 since 60 = 4^2 + 2^2 + 2^2 + 6^2 with 4*(2+3*2) = 4^3/2.
a(92) = 1 since 92 = 6^2 + 6^2 + 4^2 + 2^2 with 6*(6+3*4) = 6^3/2.
a(240) = 1 since 240 = 2^2 + 14^2 + 6^2 + 2^2 with 2*(14+3*6) = 4^3.
a(807) = 1 since 807 = 1^2 + 21^2 + 2^2 + 19^2 with 1*(21+3*2) = 3^3.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
QQ[n_]:=QQ[n]=CQ[n]||CQ[2n];
tab={}; Do[r=0; Do[If[QQ[x(y+3z)]&&SQ[n-x^2-y^2-z^2], r=r+1], {x, 0, Sqrt[n-1]}, {y, 0, Sqrt[If[x==0, n/3, n-1-x^2]]}, {z, If[x==0, y, 0], Sqrt[If[x==0, (n-x^2-y^2)/2, n-1-x^2-y^2]]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 19 2018
STATUS
approved

Search completed in 0.009 seconds