[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300751
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x + 3*y + 5*z a positive square, where x,y,z,w are nonnegative integers such that 2*x or y or z is a square.
11
1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 4, 2, 1, 5, 5, 2, 1, 2, 2, 2, 1, 4, 5, 2, 1, 4, 7, 1, 2, 5, 3, 2, 1, 3, 6, 5, 2, 8, 6, 1, 3, 5, 6, 2, 2, 4, 8, 5, 4, 2, 4, 3, 2, 6, 4, 5, 2, 1, 6, 4, 1, 8, 9, 6, 2, 3, 3, 1, 3, 7, 9, 5, 5, 4, 7, 1, 1
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n = 1,2,3,..., and a(n) = 1 only for n = 16^k*m with k = 0,1,2,... and m = 0, 1, 4, 5, 6, 7, 8, 20, 24, 28, 31, 36, 43, 61, 71, 79, 100, 116, 157, 188, 200, 344, 351, 388, 632.
This is stronger than the author's 1-3-5 conjecture in A271518. See also A300752 for a similar conjecture stronger than the 1-3-5 conjecture.
a(n) > 0 for all n = 1..3*10^6. - Zhi-Wei Sun, Oct 06 2020
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(8) = 1 since 8 = 0^2 + 2^2 + 2^2 + 0^2 with 2*0 = 0^2 and 0 + 3*2 + 5*2 = 4^2.
a(61) = 1 since 61 = 0^2 + 0^2 + 5^2 + 6^2 with 0 = 0^2 and 0 + 3*0 + 5*5 = 5^2.
a(79) = 1 since 79 = 5^2 + 2^2 + 1^2 + 7^2 with 1 = 1^2 and 5 + 3*2 + 5*1 = 4^2.
a(188) = 1 since 188 = 7^2 + 9^2 + 3^2 + 7^2 with 9 = 3^2 and 7 + 3*9 + 5*3 = 7^2.
a(200) = 0 since 200 = 6^2 + 10^2 + 0^2 + 8^2 with 0 = 0^2 and 6 + 3*10 + 5*0 = 6^2.
a(632) = 1 since 632 = 6^2 + 16^2 + 18^2 + 4^2 with 16 = 4^2 and 6 + 3*16 + 5*18 = 12^2.
a(808) = 3 since 808 = 8^2 + 2^2 + 26^2 + 8^2 = 8^2 + 22^2 + 14^2 + 8^2 = 18^2 + 12^2 + 18^2 + 4^2 with 2*8 = 4^2, 2*18 = 6^2 and 8 + 3*2 + 5*26 = 8 + 3*22 + 5*14 = 18 + 3*12 + 5*18 = 12^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[(SQ[2(m^2-3y-5z)]||SQ[y]||SQ[z])&&SQ[n-(m^2-3y-5z)^2-y^2-z^2], r=r+1], {m, 1, (35n)^(1/4)}, {y, 0, Min[m^2/3, Sqrt[n]]}, {z, 0, Min[(m^2-3y)/5, Sqrt[n-y^2]]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 11 2018
STATUS
approved