[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a305052 -id:a305052
     Sort: relevance | references | number | modified | created      Format: long | short | data
Heinz numbers of connected integer partitions.
+10
85
2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. This sequence lists all Heinz numbers of multisets S such that G(S) is a connected graph.
LINKS
Madeline Locus Dawsey, Tyler Russell and Dannie Urban, Polynomials Associated to Integer Partitions, arXiv:2108.00943 [math.NT], 2021.
EXAMPLE
The sequence of all connected multiset multisystems (see A302242, A112798) begins:
2: {{}}
3: {{1}}
5: {{2}}
7: {{1,1}}
9: {{1},{1}}
11: {{3}}
13: {{1,2}}
17: {{4}}
19: {{1,1,1}}
21: {{1},{1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
29: {{1,3}}
31: {{5}}
37: {{1,1,2}}
39: {{1},{1,2}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
57: {{1},{1,1,1}}
59: {{7}}
61: {{1,2,2}}
63: {{1},{1},{1,1}}
65: {{2},{1,2}}
67: {{8}}
71: {{1,1,3}}
73: {{2,4}}
79: {{1,5}}
81: {{1},{1},{1},{1}}
83: {{9}}
87: {{1},{1,3}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
97: {{3,3}}
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Select[Range[300], Length[zsm[primeMS[#]]]==1&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 24 2018
STATUS
approved
Number of connected components of the integer partition with Heinz number n.
+10
63
0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 3, 1, 5, 2, 2, 2, 3, 1, 2, 1, 4, 1, 2, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 4, 1, 2, 1, 4, 1, 2, 1, 6, 1, 3, 1, 3, 2, 3, 1, 4, 1, 2, 2, 3, 2, 2, 1, 5, 1, 2, 1, 3, 2, 2, 1
OFFSET
1,4
COMMENTS
First differs from |A305052(n)| at a(169) = 1, A305052(169) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. If S is the integer partition with Heinz number n, a(n) is the number of connected components of G(S).
FORMULA
For all n, k > 0, we have a(2^n * k) = n + a(k).
For all x, y > 0, we have a(x * y) <= a(x) + a(y).
For x, y > 0 strongly coprime, we have a(x * y) = a(x) + a(y). Strongly coprime means every prime index of x is coprime to every prime index of y, where a prime index of n is a number m such that prime(m) divides n.
a(n) = A305501(A064989(n)) + A007814(n). - Antti Karttunen, Nov 10 2018
EXAMPLE
The a(315) = 2 connected components of {2,2,3,4} are {{3},{2,2,4}}.
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Sort[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Table[Length[zsm[primeMS[n]]], {n, 100}]
PROG
(PARI)
zero_first_elem_and_connected_elems(ys) = { my(cs = List([ys[1]]), i=1); ys[1] = 0; while(i<=#cs, for(j=2, #ys, if(ys[j]&&(1!=gcd(cs[i], ys[j])), listput(cs, ys[j]); ys[j] = 0)); i++); (ys); };
A007814(n) = valuation(n, 2);
A000265(n) = (n/2^A007814(n));
A305079(n) = if(!(n%2), A007814(n)+A305079(A000265(n)), my(cs = apply(p -> primepi(p), factor(n)[, 1]~), s=0); while(#cs, cs = select(c -> c, zero_first_elem_and_connected_elems(cs)); s++); (s)); \\ Antti Karttunen, Nov 10 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 24 2018
EXTENSIONS
Terms and Mathematica program corrected by Gus Wiseman, Nov 10 2018
STATUS
approved
Numbers whose multiset multisystem spans an initial interval of positive integers.
+10
40
1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 35, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 61, 63, 64, 65, 69, 70, 72, 74, 75, 76, 78, 81, 84, 89, 90, 91, 95, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The n-th multiset multisystem is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the 78th multiset multisystem is {{},{1},{1,2}}.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
2: {{}}
3: {{1}}
4: {{},{}}
6: {{},{1}}
7: {{1,1}}
8: {{},{},{}}
9: {{1},{1}}
12: {{},{},{1}}
13: {{1,2}}
14: {{},{1,1}}
15: {{1},{2}}
16: {{},{},{},{}}
18: {{},{1},{1}}
19: {{1,1,1}}
21: {{1},{1,1}}
24: {{},{},{},{1}}
26: {{},{1,2}}
27: {{1},{1},{1}}
28: {{},{},{1,1}}
30: {{},{1},{2}}
32: {{},{},{},{},{}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[100], normQ[primeMS/@primeMS[#]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 13 2018
STATUS
approved
MM-numbers of labeled graphs with loops spanning an initial interval of positive integers.
+10
24
1, 7, 13, 91, 161, 299, 329, 377, 611, 667, 1261, 1363, 1937, 2021, 2093, 2117, 2639, 4277, 4669, 7567, 8671, 8827, 9541, 13559, 14053, 14147, 14819, 15617, 16211, 17719, 23989, 24017, 26273, 27521, 28681, 29003, 31349, 31913, 36569, 44551, 44603, 46483, 48691
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
LINKS
Eric Weisstein's World of Mathematics, Simple Graph
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
7: {{1,1}}
13: {{1,2}}
91: {{1,1},{1,2}}
161: {{1,1},{2,2}}
299: {{2,2},{1,2}}
329: {{1,1},{2,3}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
667: {{2,2},{1,3}}
1261: {{3,3},{1,2}}
1363: {{1,3},{2,3}}
1937: {{1,2},{3,4}}
2021: {{1,4},{2,3}}
2093: {{1,1},{2,2},{1,2}}
2117: {{1,3},{2,4}}
2639: {{1,1},{1,2},{1,3}}
4277: {{1,1},{1,2},{2,3}}
4669: {{1,1},{2,2},{1,3}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[10000], And[SquareFreeQ[#], normQ[primeMS/@primeMS[#]], And@@(Length[primeMS[#]]==2&/@primeMS[#])]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 13 2018
STATUS
approved
MM-numbers of labeled simple graphs spanning an initial interval of positive integers.
+10
13
1, 13, 377, 611, 1363, 1937, 2021, 2117, 16211, 17719, 26273, 27521, 44603, 56173, 58609, 83291, 91031, 91039, 99499, 141401, 143663, 146653, 147533, 153023, 159659, 167243, 170839, 203087, 237679, 243893, 265369, 271049, 276877, 290029, 301129, 315433, 467711
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
LINKS
Eric Weisstein's World of Mathematics, Simple Graph
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
13: {{1,2}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
1363: {{1,3},{2,3}}
1937: {{1,2},{3,4}}
2021: {{1,4},{2,3}}
2117: {{1,3},{2,4}}
16211: {{1,2},{1,3},{1,4}}
17719: {{1,2},{1,3},{2,3}}
26273: {{1,2},{1,4},{2,3}}
27521: {{1,2},{1,3},{2,4}}
44603: {{1,2},{2,3},{2,4}}
56173: {{1,2},{1,3},{3,4}}
58609: {{1,3},{1,4},{2,3}}
83291: {{1,2},{1,4},{3,4}}
91031: {{1,3},{1,4},{2,4}}
91039: {{1,2},{2,3},{3,4}}
99499: {{1,3},{2,3},{2,4}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[10000], And[SquareFreeQ[#], normQ[primeMS/@primeMS[#]], And@@(And[SquareFreeQ[#], Length[primeMS[#]]==2]&/@primeMS[#])]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 13 2018
STATUS
approved
MM-numbers of labeled multigraphs with loops spanning an initial interval of positive integers.
+10
12
1, 7, 13, 49, 91, 161, 169, 299, 329, 343, 377, 611, 637, 667, 1127, 1183, 1261, 1363, 1937, 2021, 2093, 2117, 2197, 2303, 2401, 2639, 3703, 3887, 4277, 4459, 4669, 4901, 6877, 7567, 7889, 7943, 8281, 8671, 8827, 9541, 10933, 13559, 14053, 14147, 14651, 14819
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
LINKS
Eric Weisstein's World of Mathematics, Simple Graph
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
7: {{1,1}}
13: {{1,2}}
49: {{1,1},{1,1}}
91: {{1,1},{1,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
299: {{2,2},{1,2}}
329: {{1,1},{2,3}}
343: {{1,1},{1,1},{1,1}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
637: {{1,1},{1,1},{1,2}}
667: {{2,2},{1,3}}
1127: {{1,1},{1,1},{2,2}}
1183: {{1,1},{1,2},{1,2}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[10000], And[normQ[primeMS/@primeMS[#]], And@@(Length[primeMS[#]]==2&/@primeMS[#])]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 13 2018
STATUS
approved
MM-numbers of labeled multigraphs spanning an initial interval of positive integers.
+10
8
1, 13, 169, 377, 611, 1363, 1937, 2021, 2117, 2197, 4901, 7943, 10933, 16211, 17719, 25181, 26273, 27521, 28561, 28717, 39527, 44603, 56173, 58609, 61393, 63713, 64061, 83291, 86903, 91031, 91039, 94987, 99499, 103259, 141401, 142129, 143663, 146653, 147533
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
LINKS
Eric Weisstein's World of Mathematics, Simple Graph
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
13: {{1,2}}
169: {{1,2},{1,2}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
1363: {{1,3},{2,3}}
1937: {{1,2},{3,4}}
2021: {{1,4},{2,3}}
2117: {{1,3},{2,4}}
2197: {{1,2},{1,2},{1,2}}
4901: {{1,2},{1,2},{1,3}}
7943: {{1,2},{1,2},{2,3}}
10933: {{1,2},{1,3},{1,3}}
16211: {{1,2},{1,3},{1,4}}
17719: {{1,2},{1,3},{2,3}}
25181: {{1,2},{1,2},{3,4}}
26273: {{1,2},{1,4},{2,3}}
27521: {{1,2},{1,3},{2,4}}
28561: {{1,2},{1,2},{1,2},{1,2}}
28717: {{1,2},{2,3},{2,3}}
39527: {{1,3},{1,3},{2,3}}
44603: {{1,2},{2,3},{2,4}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[100000], And[normQ[primeMS/@primeMS[#]], And@@(And[SquareFreeQ[#], Length[primeMS[#]]==2]&/@primeMS[#])]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 13 2018
STATUS
approved
MM-numbers of labeled hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.
+10
8
1, 7, 13, 19, 37, 53, 61, 89, 91, 113, 131, 133, 151, 161, 223, 247, 251, 259, 281, 299, 311, 329, 359, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 953, 1007, 1057, 1069, 1073, 1157
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
7: {{1,1}}
13: {{1,2}}
19: {{1,1,1}}
37: {{1,1,2}}
53: {{1,1,1,1}}
61: {{1,2,2}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
113: {{1,2,3}}
131: {{1,1,1,1,1}}
133: {{1,1},{1,1,1}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
223: {{1,1,1,1,2}}
247: {{1,2},{1,1,1}}
251: {{1,2,2,2}}
259: {{1,1},{1,1,2}}
281: {{1,1,2,3}}
299: {{1,2},{2,2}}
311: {{1,1,1,1,1,1}}
329: {{1,1},{2,3}}
359: {{1,1,1,2,2}}
371: {{1,1},{1,1,1,1}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[1000], And[SquareFreeQ[#], normQ[primeMS/@primeMS[#]], And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 14 2018
STATUS
approved
MM-numbers of labeled multi-hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.
+10
8
1, 7, 13, 19, 37, 49, 53, 61, 89, 91, 113, 131, 133, 151, 161, 169, 223, 247, 251, 259, 281, 299, 311, 329, 343, 359, 361, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 637, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 931, 953
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
7: {{1,1}}
13: {{1,2}}
19: {{1,1,1}}
37: {{1,1,2}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
61: {{1,2,2}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
113: {{1,2,3}}
131: {{1,1,1,1,1}}
133: {{1,1},{1,1,1}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
223: {{1,1,1,1,2}}
247: {{1,2},{1,1,1}}
251: {{1,2,2,2}}
259: {{1,1},{1,1,2}}
281: {{1,1,2,3}}
299: {{1,2},{2,2}}
311: {{1,1,1,1,1,1}}
329: {{1,1},{2,3}}
343: {{1,1},{1,1},{1,1}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[1000], And[normQ[primeMS/@primeMS[#]], And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 14 2018
STATUS
approved
MM-numbers of labeled simple hypergraphs with no singletons spanning an initial interval of positive integers.
+10
5
1, 13, 113, 377, 611, 1291, 1363, 1469, 1937, 2021, 2117, 3277, 4537, 4859, 5249, 5311, 7423, 8249, 8507, 16211, 16403, 16559, 16783, 16837, 17719, 20443, 20453, 24553, 25477, 26273, 26969, 27521, 34567, 37439, 39437, 41689, 42011, 42137, 42601, 43873, 43957
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
13: {{1,2}}
113: {{1,2,3}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
1291: {{1,2,3,4}}
1363: {{1,3},{2,3}}
1469: {{1,2},{1,2,3}}
1937: {{1,2},{3,4}}
2021: {{1,4},{2,3}}
2117: {{1,3},{2,4}}
3277: {{1,3},{1,2,3}}
4537: {{1,2},{1,3,4}}
4859: {{1,4},{1,2,3}}
5249: {{1,3},{1,2,4}}
5311: {{2,3},{1,2,3}}
7423: {{1,2},{2,3,4}}
8249: {{2,4},{1,2,3}}
8507: {{2,3},{1,2,4}}
16211: {{1,2},{1,3},{1,4}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[10000], And[SquareFreeQ[#], normQ[primeMS/@primeMS[#]], And@@(And[SquareFreeQ[#], PrimeOmega[#]>1]&/@primeMS[#])]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 13 2018
STATUS
approved

Search completed in 0.021 seconds