Displaying 1-10 of 23 results found.
Heinz numbers of connected integer partitions.
+10
85
2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. This sequence lists all Heinz numbers of multisets S such that G(S) is a connected graph.
EXAMPLE
The sequence of all connected multiset multisystems (see A302242, A112798) begins:
2: {{}}
3: {{1}}
5: {{2}}
7: {{1,1}}
9: {{1},{1}}
11: {{3}}
13: {{1,2}}
17: {{4}}
19: {{1,1,1}}
21: {{1},{1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
29: {{1,3}}
31: {{5}}
37: {{1,1,2}}
39: {{1},{1,2}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
57: {{1},{1,1,1}}
59: {{7}}
61: {{1,2,2}}
63: {{1},{1},{1,1}}
65: {{2},{1,2}}
67: {{8}}
71: {{1,1,3}}
73: {{2,4}}
79: {{1,5}}
81: {{1},{1},{1},{1}}
83: {{9}}
87: {{1},{1,3}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
97: {{3,3}}
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Select[Range[300], Length[zsm[primeMS[#]]]==1&]
CROSSREFS
Cf. A001221, A048143, A056239, A112798, A286518, A286520, A290103, A302242, A303837, A304118, A304714, A304716, A305052, A305055, A305079.
Number of connected components of the integer partition with Heinz number n.
+10
63
0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 3, 1, 5, 2, 2, 2, 3, 1, 2, 1, 4, 1, 2, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 4, 1, 2, 1, 4, 1, 2, 1, 6, 1, 3, 1, 3, 2, 3, 1, 4, 1, 2, 2, 3, 2, 2, 1, 5, 1, 2, 1, 3, 2, 2, 1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. If S is the integer partition with Heinz number n, a(n) is the number of connected components of G(S).
FORMULA
For all n, k > 0, we have a(2^n * k) = n + a(k).
For all x, y > 0, we have a(x * y) <= a(x) + a(y).
For x, y > 0 strongly coprime, we have a(x * y) = a(x) + a(y). Strongly coprime means every prime index of x is coprime to every prime index of y, where a prime index of n is a number m such that prime(m) divides n.
EXAMPLE
The a(315) = 2 connected components of {2,2,3,4} are {{3},{2,2,4}}.
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Sort[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Table[Length[zsm[primeMS[n]]], {n, 100}]
PROG
(PARI)
zero_first_elem_and_connected_elems(ys) = { my(cs = List([ys[1]]), i=1); ys[1] = 0; while(i<=#cs, for(j=2, #ys, if(ys[j]&&(1!=gcd(cs[i], ys[j])), listput(cs, ys[j]); ys[j] = 0)); i++); (ys); };
A305079(n) = if(!(n%2), A007814(n)+ A305079( A000265(n)), my(cs = apply(p -> primepi(p), factor(n)[, 1]~), s=0); while(#cs, cs = select(c -> c, zero_first_elem_and_connected_elems(cs)); s++); (s)); \\ Antti Karttunen, Nov 10 2018
CROSSREFS
Cf. A001221, A048143, A056239, A112798, A286518, A286520, A290103, A302242, A303837, A304118, A304714, A304716, A305052, A305055, A305078, A305501.
EXTENSIONS
Terms and Mathematica program corrected by Gus Wiseman, Nov 10 2018
Numbers whose multiset multisystem spans an initial interval of positive integers.
+10
40
1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 35, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 61, 63, 64, 65, 69, 70, 72, 74, 75, 76, 78, 81, 84, 89, 90, 91, 95, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The n-th multiset multisystem is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the 78th multiset multisystem is {{},{1},{1,2}}.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
2: {{}}
3: {{1}}
4: {{},{}}
6: {{},{1}}
7: {{1,1}}
8: {{},{},{}}
9: {{1},{1}}
12: {{},{},{1}}
13: {{1,2}}
14: {{},{1,1}}
15: {{1},{2}}
16: {{},{},{},{}}
18: {{},{1},{1}}
19: {{1,1,1}}
21: {{1},{1,1}}
24: {{},{},{},{1}}
26: {{},{1,2}}
27: {{1},{1},{1}}
28: {{},{},{1,1}}
30: {{},{1},{2}}
32: {{},{},{},{},{}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[100], normQ[primeMS/@primeMS[#]]&]
CROSSREFS
Cf. A001222, A003963, A034691, A034729, A055932, A056239, A112798, A255906, A290103, A302242, A305052.
MM-numbers of labeled graphs with loops spanning an initial interval of positive integers.
+10
24
1, 7, 13, 91, 161, 299, 329, 377, 611, 667, 1261, 1363, 1937, 2021, 2093, 2117, 2639, 4277, 4669, 7567, 8671, 8827, 9541, 13559, 14053, 14147, 14819, 15617, 16211, 17719, 23989, 24017, 26273, 27521, 28681, 29003, 31349, 31913, 36569, 44551, 44603, 46483, 48691
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
7: {{1,1}}
13: {{1,2}}
91: {{1,1},{1,2}}
161: {{1,1},{2,2}}
299: {{2,2},{1,2}}
329: {{1,1},{2,3}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
667: {{2,2},{1,3}}
1261: {{3,3},{1,2}}
1363: {{1,3},{2,3}}
1937: {{1,2},{3,4}}
2021: {{1,4},{2,3}}
2093: {{1,1},{2,2},{1,2}}
2117: {{1,3},{2,4}}
2639: {{1,1},{1,2},{1,3}}
4277: {{1,1},{1,2},{2,3}}
4669: {{1,1},{2,2},{1,3}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[10000], And[SquareFreeQ[#], normQ[primeMS/@primeMS[#]], And@@(Length[primeMS[#]]==2&/@primeMS[#])]&]
MM-numbers of labeled simple graphs spanning an initial interval of positive integers.
+10
13
1, 13, 377, 611, 1363, 1937, 2021, 2117, 16211, 17719, 26273, 27521, 44603, 56173, 58609, 83291, 91031, 91039, 99499, 141401, 143663, 146653, 147533, 153023, 159659, 167243, 170839, 203087, 237679, 243893, 265369, 271049, 276877, 290029, 301129, 315433, 467711
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
13: {{1,2}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
1363: {{1,3},{2,3}}
1937: {{1,2},{3,4}}
2021: {{1,4},{2,3}}
2117: {{1,3},{2,4}}
16211: {{1,2},{1,3},{1,4}}
17719: {{1,2},{1,3},{2,3}}
26273: {{1,2},{1,4},{2,3}}
27521: {{1,2},{1,3},{2,4}}
44603: {{1,2},{2,3},{2,4}}
56173: {{1,2},{1,3},{3,4}}
58609: {{1,3},{1,4},{2,3}}
83291: {{1,2},{1,4},{3,4}}
91031: {{1,3},{1,4},{2,4}}
91039: {{1,2},{2,3},{3,4}}
99499: {{1,3},{2,3},{2,4}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[10000], And[SquareFreeQ[#], normQ[primeMS/@primeMS[#]], And@@(And[SquareFreeQ[#], Length[primeMS[#]]==2]&/@primeMS[#])]&]
CROSSREFS
Cf. A001222, A003963, A005117, A055932, A056239, A112798, A255906, A290103, A302242, A302478, A302491, A305052.
MM-numbers of labeled multigraphs with loops spanning an initial interval of positive integers.
+10
12
1, 7, 13, 49, 91, 161, 169, 299, 329, 343, 377, 611, 637, 667, 1127, 1183, 1261, 1363, 1937, 2021, 2093, 2117, 2197, 2303, 2401, 2639, 3703, 3887, 4277, 4459, 4669, 4901, 6877, 7567, 7889, 7943, 8281, 8671, 8827, 9541, 10933, 13559, 14053, 14147, 14651, 14819
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
7: {{1,1}}
13: {{1,2}}
49: {{1,1},{1,1}}
91: {{1,1},{1,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
299: {{2,2},{1,2}}
329: {{1,1},{2,3}}
343: {{1,1},{1,1},{1,1}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
637: {{1,1},{1,1},{1,2}}
667: {{2,2},{1,3}}
1127: {{1,1},{1,1},{2,2}}
1183: {{1,1},{1,2},{1,2}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[10000], And[normQ[primeMS/@primeMS[#]], And@@(Length[primeMS[#]]==2&/@primeMS[#])]&]
MM-numbers of labeled multigraphs spanning an initial interval of positive integers.
+10
8
1, 13, 169, 377, 611, 1363, 1937, 2021, 2117, 2197, 4901, 7943, 10933, 16211, 17719, 25181, 26273, 27521, 28561, 28717, 39527, 44603, 56173, 58609, 61393, 63713, 64061, 83291, 86903, 91031, 91039, 94987, 99499, 103259, 141401, 142129, 143663, 146653, 147533
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
13: {{1,2}}
169: {{1,2},{1,2}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
1363: {{1,3},{2,3}}
1937: {{1,2},{3,4}}
2021: {{1,4},{2,3}}
2117: {{1,3},{2,4}}
2197: {{1,2},{1,2},{1,2}}
4901: {{1,2},{1,2},{1,3}}
7943: {{1,2},{1,2},{2,3}}
10933: {{1,2},{1,3},{1,3}}
16211: {{1,2},{1,3},{1,4}}
17719: {{1,2},{1,3},{2,3}}
25181: {{1,2},{1,2},{3,4}}
26273: {{1,2},{1,4},{2,3}}
27521: {{1,2},{1,3},{2,4}}
28561: {{1,2},{1,2},{1,2},{1,2}}
28717: {{1,2},{2,3},{2,3}}
39527: {{1,3},{1,3},{2,3}}
44603: {{1,2},{2,3},{2,4}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[100000], And[normQ[primeMS/@primeMS[#]], And@@(And[SquareFreeQ[#], Length[primeMS[#]]==2]&/@primeMS[#])]&]
MM-numbers of labeled hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.
+10
8
1, 7, 13, 19, 37, 53, 61, 89, 91, 113, 131, 133, 151, 161, 223, 247, 251, 259, 281, 299, 311, 329, 359, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 953, 1007, 1057, 1069, 1073, 1157
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
7: {{1,1}}
13: {{1,2}}
19: {{1,1,1}}
37: {{1,1,2}}
53: {{1,1,1,1}}
61: {{1,2,2}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
113: {{1,2,3}}
131: {{1,1,1,1,1}}
133: {{1,1},{1,1,1}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
223: {{1,1,1,1,2}}
247: {{1,2},{1,1,1}}
251: {{1,2,2,2}}
259: {{1,1},{1,1,2}}
281: {{1,1,2,3}}
299: {{1,2},{2,2}}
311: {{1,1,1,1,1,1}}
329: {{1,1},{2,3}}
359: {{1,1,1,2,2}}
371: {{1,1},{1,1,1,1}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[1000], And[SquareFreeQ[#], normQ[primeMS/@primeMS[#]], And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]
MM-numbers of labeled multi-hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.
+10
8
1, 7, 13, 19, 37, 49, 53, 61, 89, 91, 113, 131, 133, 151, 161, 169, 223, 247, 251, 259, 281, 299, 311, 329, 343, 359, 361, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 637, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 931, 953
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
7: {{1,1}}
13: {{1,2}}
19: {{1,1,1}}
37: {{1,1,2}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
61: {{1,2,2}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
113: {{1,2,3}}
131: {{1,1,1,1,1}}
133: {{1,1},{1,1,1}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
223: {{1,1,1,1,2}}
247: {{1,2},{1,1,1}}
251: {{1,2,2,2}}
259: {{1,1},{1,1,2}}
281: {{1,1,2,3}}
299: {{1,2},{2,2}}
311: {{1,1,1,1,1,1}}
329: {{1,1},{2,3}}
343: {{1,1},{1,1},{1,1}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[1000], And[normQ[primeMS/@primeMS[#]], And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]
MM-numbers of labeled simple hypergraphs with no singletons spanning an initial interval of positive integers.
+10
5
1, 13, 113, 377, 611, 1291, 1363, 1469, 1937, 2021, 2117, 3277, 4537, 4859, 5249, 5311, 7423, 8249, 8507, 16211, 16403, 16559, 16783, 16837, 17719, 20443, 20453, 24553, 25477, 26273, 26969, 27521, 34567, 37439, 39437, 41689, 42011, 42137, 42601, 43873, 43957
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
13: {{1,2}}
113: {{1,2,3}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
1291: {{1,2,3,4}}
1363: {{1,3},{2,3}}
1469: {{1,2},{1,2,3}}
1937: {{1,2},{3,4}}
2021: {{1,4},{2,3}}
2117: {{1,3},{2,4}}
3277: {{1,3},{1,2,3}}
4537: {{1,2},{1,3,4}}
4859: {{1,4},{1,2,3}}
5249: {{1,3},{1,2,4}}
5311: {{2,3},{1,2,3}}
7423: {{1,2},{2,3,4}}
8249: {{2,4},{1,2,3}}
8507: {{2,3},{1,2,4}}
16211: {{1,2},{1,3},{1,4}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[10000], And[SquareFreeQ[#], normQ[primeMS/@primeMS[#]], And@@(And[SquareFreeQ[#], PrimeOmega[#]>1]&/@primeMS[#])]&]
Search completed in 0.021 seconds
|