Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Dec 29 2018 09:18:42
%S 1,7,13,91,161,299,329,377,611,667,1261,1363,1937,2021,2093,2117,2639,
%T 4277,4669,7567,8671,8827,9541,13559,14053,14147,14819,15617,16211,
%U 17719,23989,24017,26273,27521,28681,29003,31349,31913,36569,44551,44603,46483,48691
%N MM-numbers of labeled graphs with loops spanning an initial interval of positive integers.
%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SimpleGraph.html">Simple Graph</a>
%e The sequence of terms together with their multiset multisystems begins:
%e 1: {}
%e 7: {{1,1}}
%e 13: {{1,2}}
%e 91: {{1,1},{1,2}}
%e 161: {{1,1},{2,2}}
%e 299: {{2,2},{1,2}}
%e 329: {{1,1},{2,3}}
%e 377: {{1,2},{1,3}}
%e 611: {{1,2},{2,3}}
%e 667: {{2,2},{1,3}}
%e 1261: {{3,3},{1,2}}
%e 1363: {{1,3},{2,3}}
%e 1937: {{1,2},{3,4}}
%e 2021: {{1,4},{2,3}}
%e 2093: {{1,1},{2,2},{1,2}}
%e 2117: {{1,3},{2,4}}
%e 2639: {{1,1},{1,2},{1,3}}
%e 4277: {{1,1},{1,2},{2,3}}
%e 4669: {{1,1},{2,2},{1,3}}
%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
%t Select[Range[10000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(Length[primeMS[#]]==2&/@primeMS[#])]&]
%Y Cf. A003963, A005117, A055932, A056239, A112798, A255906, A290103, A302242, A305052.
%Y Cf. A320456, A320458, A320459, A320462, A320532.
%K nonn
%O 1,2
%A _Gus Wiseman_, Oct 13 2018