[go: up one dir, main page]

login
Search: a293128 -id:a293128
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number A(n,k) of standard Young tableaux of n cells and height <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
44
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 6, 1, 0, 1, 1, 2, 4, 9, 10, 1, 0, 1, 1, 2, 4, 10, 21, 20, 1, 0, 1, 1, 2, 4, 10, 25, 51, 35, 1, 0, 1, 1, 2, 4, 10, 26, 70, 127, 70, 1, 0, 1, 1, 2, 4, 10, 26, 75, 196, 323, 126, 1, 0, 1, 1, 2, 4, 10, 26, 76, 225, 588, 835, 252, 1, 0
OFFSET
0,13
COMMENTS
Also the number A(n,k) of standard Young tableaux of n cells and <= k columns.
A(n,k) is also the number of n-length words w over a k-ary alphabet {a1,a2,...,ak} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,ak), where #(z,x) counts the letters x in word z. The A(4,4) = 10 words of length 4 over alphabet {a,b,c,d} are: aaaa, aaab, aaba, abaa, aabb, abab, aabc, abac, abca, abcd.
LINKS
FORMULA
Conjecture: A(n,k) ~ k^n/Pi^(k/2) * (k/n)^(k*(k-1)/4) * Product_{j=1..k} Gamma(j/2). - Vaclav Kotesovec, Sep 12 2013
EXAMPLE
A(4,2) = 6, there are 6 standard Young tableaux of 4 cells and height <= 2:
+------+ +------+ +---------+ +---------+ +---------+ +------------+
| 1 3 | | 1 2 | | 1 3 4 | | 1 2 4 | | 1 2 3 | | 1 2 3 4 |
| 2 4 | | 3 4 | | 2 .-----+ | 3 .-----+ | 4 .-----+ +------------+
+------+ +------+ +---+ +---+ +---+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 3, 4, 4, 4, 4, 4, 4, ...
0, 1, 6, 9, 10, 10, 10, 10, 10, ...
0, 1, 10, 21, 25, 26, 26, 26, 26, ...
0, 1, 20, 51, 70, 75, 76, 76, 76, ...
0, 1, 35, 127, 196, 225, 231, 232, 232, ...
0, 1, 70, 323, 588, 715, 756, 763, 764, ...
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
A:= (n, k)-> g(n, k, []):
seq(seq(A(n, d-n), n=0..d), d=0..15);
MATHEMATICA
h[l_List] := Module[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_List] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]];
a[n_, k_] := g[n, k, {}];
Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 06 2013, translated from Maple *)
CROSSREFS
Main diagonal gives A000085.
A(2n,n) gives A293128.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 16 2012
STATUS
approved
Partial sums of rows of A047884. Young Tableaux by height.
+10
4
1, 1, 2, 1, 3, 4, 1, 6, 9, 10, 1, 10, 21, 25, 26, 1, 20, 51, 70, 75, 76, 1, 35, 127, 196, 225, 231, 232, 1, 70, 323, 588, 715, 756, 763, 764, 1, 126, 835, 1764, 2347, 2556, 2611, 2619, 2620, 1, 252, 2188, 5544, 7990, 9096, 9415, 9486, 9495, 9496, 1, 462, 5798, 17424, 27908, 33231, 35135, 35596
OFFSET
1,3
LINKS
Seiichi Manyama, Rows n = 1..70, flattened (first 44 rows from Alois P. Heinz)
EXAMPLE
1;
1, 2;
1, 3, 4;
1, 6, 9, 10;
1, 10, 21, 25, 26;
1, 20, 51, 70, 75, 76;
1, 35, 127, 196, 225, 231, 232;
1, 70, 323, 588, 715, 756, 763, 764;
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]), g(n, i-1, l)+
`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
T:= (n, k)-> g(n, k, []):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 16 2012
MATHEMATICA
Accumulate /@ Table[ Plus @@ NumberOfTableaux /@ Reverse /@ Union[ Sort /@ (Compositions[n - m, m] + 1)], {n, 1, 12}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jan 29 2013, after Mathematica program for A047884 *)
KEYWORD
easy,nice,nonn,tabl
AUTHOR
STATUS
approved
Number of self-inverse permutations of [2n] with longest increasing subsequence of length n.
+10
4
1, 1, 5, 31, 265, 2446, 26069, 294386, 3628517, 46938514, 645978814, 9265791393, 139408562319, 2174338555026, 35259402634616, 590187761512336, 10209739522685893, 181678453872654154, 3326776921054665350, 62485419303819431072, 1203772979032614462448
OFFSET
0,3
COMMENTS
Also the number of 2n-length words w over n-ary alphabet {a1,a2,...,an} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,an) >= 1, where #(z,x) counts the letters x in word z. The a(2) = 5 words of length 4 over alphabet {a,b} are: aaab, aaba, abaa, aabb, abab.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..70 (terms 0..55 from Alois P. Heinz)
FORMULA
a(n) = A047884(2n,n).
EXAMPLE
a(2) = 5: 1432, 2143, 3214, 3412, 4231.
MAPLE
h:= proc(l) local n; n:= nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), add(
g(n-i*j, i-1, [l[], i$j]), j=0..n/i)):
a:= n-> g(n$2, [n]):
seq(a(n), n=0..25);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
a[n_] := g[n, n, {n}];
a /@ Range[0, 25] (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 15 2016
STATUS
approved

Search completed in 0.005 seconds