[go: up one dir, main page]

login
Search: a049400 -id:a049400
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number A(n,k) of standard Young tableaux of n cells and height <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
44
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 6, 1, 0, 1, 1, 2, 4, 9, 10, 1, 0, 1, 1, 2, 4, 10, 21, 20, 1, 0, 1, 1, 2, 4, 10, 25, 51, 35, 1, 0, 1, 1, 2, 4, 10, 26, 70, 127, 70, 1, 0, 1, 1, 2, 4, 10, 26, 75, 196, 323, 126, 1, 0, 1, 1, 2, 4, 10, 26, 76, 225, 588, 835, 252, 1, 0
OFFSET
0,13
COMMENTS
Also the number A(n,k) of standard Young tableaux of n cells and <= k columns.
A(n,k) is also the number of n-length words w over a k-ary alphabet {a1,a2,...,ak} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,ak), where #(z,x) counts the letters x in word z. The A(4,4) = 10 words of length 4 over alphabet {a,b,c,d} are: aaaa, aaab, aaba, abaa, aabb, abab, aabc, abac, abca, abcd.
LINKS
FORMULA
Conjecture: A(n,k) ~ k^n/Pi^(k/2) * (k/n)^(k*(k-1)/4) * Product_{j=1..k} Gamma(j/2). - Vaclav Kotesovec, Sep 12 2013
EXAMPLE
A(4,2) = 6, there are 6 standard Young tableaux of 4 cells and height <= 2:
+------+ +------+ +---------+ +---------+ +---------+ +------------+
| 1 3 | | 1 2 | | 1 3 4 | | 1 2 4 | | 1 2 3 | | 1 2 3 4 |
| 2 4 | | 3 4 | | 2 .-----+ | 3 .-----+ | 4 .-----+ +------------+
+------+ +------+ +---+ +---+ +---+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 3, 4, 4, 4, 4, 4, 4, ...
0, 1, 6, 9, 10, 10, 10, 10, 10, ...
0, 1, 10, 21, 25, 26, 26, 26, 26, ...
0, 1, 20, 51, 70, 75, 76, 76, 76, ...
0, 1, 35, 127, 196, 225, 231, 232, 232, ...
0, 1, 70, 323, 588, 715, 756, 763, 764, ...
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
A:= (n, k)-> g(n, k, []):
seq(seq(A(n, d-n), n=0..d), d=0..15);
MATHEMATICA
h[l_List] := Module[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_List] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]];
a[n_, k_] := g[n, k, {}];
Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 06 2013, translated from Maple *)
CROSSREFS
Main diagonal gives A000085.
A(2n,n) gives A293128.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 16 2012
STATUS
approved
Triangle of numbers a(n,k) = number of Young tableaux with n cells and k rows (1 <= k <= n); also number of self-inverse permutations on n letters in which the length of the longest scattered (i.e., not necessarily contiguous) increasing subsequence is k.
+10
19
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 9, 11, 4, 1, 1, 19, 31, 19, 5, 1, 1, 34, 92, 69, 29, 6, 1, 1, 69, 253, 265, 127, 41, 7, 1, 1, 125, 709, 929, 583, 209, 55, 8, 1, 1, 251, 1936, 3356, 2446, 1106, 319, 71, 9, 1, 1, 461, 5336, 11626, 10484, 5323, 1904, 461, 89, 10, 1
OFFSET
1,5
REFERENCES
W. Fulton, Young Tableaux, Cambridge, 1997.
D. Stanton and D. White, Constructive Combinatorics, Springer, 1986.
EXAMPLE
For n=3 the 4 tableaux are
1 2 3 . 1 2 . 1 3 . 1
. . . . 3 . . 2 . . 2
. . . . . . . . . . 3
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 5, 3, 1;
1, 9, 11, 4, 1;
1, 19, 31, 19, 5, 1;
1, 34, 92, 69, 29, 6, 1;
1, 69, 253, 265, 127, 41, 7, 1;
1, 125, 709, 929, 583, 209, 55, 8, 1;
1, 251, 1936, 3356, 2446, 1106, 319, 71, 9, 1;
1, 461, 5336, 11626, 10484, 5323, 1904, 461, 89, 10, 1;
...
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) `if`(n=0 or i=1, (p->h(p)*x^`if`(p=[], 0, p[1]))
([l[], 1$n]), add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(g(n$2, [])):
seq(T(n), n=1..14); # Alois P. Heinz, Apr 16 2012, revised Mar 05 2014
MATHEMATICA
Table[ Plus@@( NumberOfTableaux/@ Reverse/@Union[ Sort/@(Compositions[ n-m, m ]+1) ]), {n, 12}, {m, n} ]
(* Second program: *)
h[l_] := With[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[ l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n== 0|| i==1, Function[p, h[p]*x^If[p == {}, 0, p[[1]] ] ] [ Join[l, Array[1&, n]]], Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][g[n, n, {}]];
Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz *)
CROSSREFS
Row sums give A000085.
Cf. A049400, A049401, and A178249 which imposes contiguity.
Columns k=1-10 give: A000012, A014495, A217323, A217324, A217325, A217326, A217327, A217328, A217321, A217322. - Alois P. Heinz, Oct 03 2012
a(2n,n) gives A267436.
KEYWORD
nonn,tabl,nice,easy
EXTENSIONS
Definition amended ('scattered' added) by Wouter Meeussen, Dec 22 2010
STATUS
approved
Number T(n,k) of standard Young tableaux of n cells and height >= k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
+10
11
1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 10, 10, 9, 4, 1, 26, 26, 25, 16, 5, 1, 76, 76, 75, 56, 25, 6, 1, 232, 232, 231, 197, 105, 36, 7, 1, 764, 764, 763, 694, 441, 176, 49, 8, 1, 2620, 2620, 2619, 2494, 1785, 856, 273, 64, 9, 1, 9496, 9496, 9495, 9244, 7308, 3952, 1506, 400, 81, 10, 1
OFFSET
0,4
COMMENTS
Also number of self-inverse permutations in S_n with longest increasing subsequence of length >= k. T(4,3) = 4: 1234, 1243, 1324, 2134; T(3,0) = T(3,1) = 4: 123, 132, 213, 321; T(5,3) = 16: 12345, 12354, 12435, 12543, 13245, 13254, 14325, 14523, 15342, 21345, 21354, 21435, 32145, 34125, 42315, 52341.
LINKS
Wikipedia, Young tableau
FORMULA
T(n,k) = A182172(n,n) - A182172(n,k-1) for k>0, T(n,0) = A182172(n,n).
EXAMPLE
T(4,3) = 4, there are 4 standard Young tableaux of 4 cells and height >= 3:
+---+ +------+ +------+ +------+
| 1 | | 1 2 | | 1 3 | | 1 4 |
| 2 | | 3 .--+ | 2 .--+ | 2 .--+
| 3 | | 4 | | 4 | | 3 |
| 4 | +---+ +---+ +---+
+---+
Triangle T(n,k) begins:
1;
1, 1;
2, 2, 1;
4, 4, 3, 1;
10, 10, 9, 4, 1;
26, 26, 25, 16, 5, 1;
76, 76, 75, 56, 25, 6, 1;
232, 232, 231, 197, 105, 36, 7, 1;
764, 764, 763, 694, 441, 176, 49, 8, 1;
...
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
T:= (n, k)-> g(n, n, []) -`if`(k=0, 0, g(n, k-1, [])):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
h[l_] := Module[{n = Length[l]}, Sum[i, {i, l}]! / Product[ Product[1 + l[[i]] - j + Sum [If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]];
t[n_, k_] := g[n, n, {}] - If[k == 0, 0, g[n, k-1, {}]];
Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
CROSSREFS
Diagonal and lower diagonals give: A000012, A000027(n+1), A000290(n+1) for n>0, A131423(n+1) for n>1.
T(2n,n) gives A318289.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 19 2012
STATUS
approved

Search completed in 0.007 seconds