OFFSET
0,6
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
Wikipedia, Kronecker delta
FORMULA
E.g.f. of column k: exp(exp(x)*(Sum_{j=0..k} Stirling2(n,j)*x^j) - delta_{0,k}).
EXAMPLE
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, 1, ...
: 2, 3, 5, 9, 17, 33, 65, ...
: 5, 10, 22, 52, 130, 340, 922, ...
: 15, 41, 125, 413, 1445, 5261, 19685, ...
: 52, 196, 836, 3916, 19676, 104116, 572036, ...
: 203, 1057, 6277, 41077, 288517, 2133397, 16379797, ...
MAPLE
egf:= k-> exp(exp(x)*add(Stirling2(k, j)*x^j, j=0..k)-`if`(k=0, 1, 0)):
A:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*j^k*A(n-j, k), j=1..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[Binomial[n-1, j-1]*j^k*A[n-j, k], {j, 1, n}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 16 2016
STATUS
approved