[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a279637 -id:a279637
     Sort: relevance | references | number | modified | created      Format: long | short | data
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the exponential transform of the k-th powers.
+10
12
1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 5, 10, 15, 1, 1, 9, 22, 41, 52, 1, 1, 17, 52, 125, 196, 203, 1, 1, 33, 130, 413, 836, 1057, 877, 1, 1, 65, 340, 1445, 3916, 6277, 6322, 4140, 1, 1, 129, 922, 5261, 19676, 41077, 52396, 41393, 21147, 1, 1, 257, 2572, 19685, 104116, 288517, 481384, 479593, 293608, 115975
OFFSET
0,6
LINKS
FORMULA
E.g.f. of column k: exp(exp(x)*(Sum_{j=0..k} Stirling2(n,j)*x^j) - delta_{0,k}).
EXAMPLE
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, 1, ...
: 2, 3, 5, 9, 17, 33, 65, ...
: 5, 10, 22, 52, 130, 340, 922, ...
: 15, 41, 125, 413, 1445, 5261, 19685, ...
: 52, 196, 836, 3916, 19676, 104116, 572036, ...
: 203, 1057, 6277, 41077, 288517, 2133397, 16379797, ...
MAPLE
egf:= k-> exp(exp(x)*add(Stirling2(k, j)*x^j, j=0..k)-`if`(k=0, 1, 0)):
A:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*j^k*A(n-j, k), j=1..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[Binomial[n-1, j-1]*j^k*A[n-j, k], {j, 1, n}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
CROSSREFS
Rows n=0+1,2 give: A000012, A000051.
Main diagonal gives A279644.
Cf. A145460.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 16 2016
STATUS
approved
Expansion of e.g.f. log(1 + exp(x)*x*(1 + 7*x + 6*x^2 + x^3)).
+10
2
0, 1, 15, 35, -650, -5251, 83376, 1623439, -19261584, -836109351, 5365104400, 636771444011, 561938325312, -661384866976523, -7128491581221360, 879709224738485415, 21742632225425026816, -1413667730904479933647, -64871991410092201623024, 2556051301724027073500035, 212244727356899863738042560
OFFSET
0,3
LINKS
FORMULA
E.g.f.: log(1 + Sum_{k>=1} k^4*x^k/k!).
a(0) = 0; a(n) = n^4 - (1/n)*Sum_{k=1..n-1} binomial(n,k)*(n - k)^4*k*a(k).
MAPLE
a:=series(log(1 + exp(x)*x*(1 + 7*x + 6*x^2 + x^3)), x=0, 21): seq(n!*coeff(a, x, n), n=0..20); # Paolo P. Lava, Mar 26 2019
MATHEMATICA
nmax = 20; CoefficientList[Series[Log[1 + Exp[x] x (1 + 7 x + 6 x^2 + x^3)], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = n^4 - Sum[Binomial[n, k] (n - k)^4 k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Feb 07 2019
STATUS
approved

Search completed in 0.005 seconds