[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the exponential transform of the k-th powers.
12

%I #16 Feb 19 2017 05:28:07

%S 1,1,1,1,1,2,1,1,3,5,1,1,5,10,15,1,1,9,22,41,52,1,1,17,52,125,196,203,

%T 1,1,33,130,413,836,1057,877,1,1,65,340,1445,3916,6277,6322,4140,1,1,

%U 129,922,5261,19676,41077,52396,41393,21147,1,1,257,2572,19685,104116,288517,481384,479593,293608,115975

%N Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the exponential transform of the k-th powers.

%H Alois P. Heinz, <a href="/A279636/b279636.txt">Antidiagonals n = 0..140, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Kronecker_delta">Kronecker delta</a>

%F E.g.f. of column k: exp(exp(x)*(Sum_{j=0..k} Stirling2(n,j)*x^j) - delta_{0,k}).

%e Square array A(n,k) begins:

%e : 1, 1, 1, 1, 1, 1, 1, ...

%e : 1, 1, 1, 1, 1, 1, 1, ...

%e : 2, 3, 5, 9, 17, 33, 65, ...

%e : 5, 10, 22, 52, 130, 340, 922, ...

%e : 15, 41, 125, 413, 1445, 5261, 19685, ...

%e : 52, 196, 836, 3916, 19676, 104116, 572036, ...

%e : 203, 1057, 6277, 41077, 288517, 2133397, 16379797, ...

%p egf:= k-> exp(exp(x)*add(Stirling2(k, j)*x^j, j=0..k)-`if`(k=0, 1, 0)):

%p A:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):

%p seq(seq(A(n, d-n), n=0..d), d=0..12);

%p # second Maple program:

%p A:= proc(n, k) option remember; `if`(n=0, 1,

%p add(binomial(n-1, j-1)*j^k*A(n-j, k), j=1..n))

%p end:

%p seq(seq(A(n, d-n), n=0..d), d=0..12);

%t A[n_, k_] := A[n, k] = If[n==0, 1, Sum[Binomial[n-1, j-1]*j^k*A[n-j, k], {j, 1, n}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Feb 19 2017, translated from Maple *)

%Y Columns k=0-10 give: A000110, A000248, A033462, A279358, A279637, A279638, A279639, A279640, A279641, A279642, A279643.

%Y Rows n=0+1,2 give: A000012, A000051.

%Y Main diagonal gives A279644.

%Y Cf. A145460.

%K nonn,tabl

%O 0,6

%A _Alois P. Heinz_, Dec 16 2016