Displaying 1-10 of 36 results found.
Minimal nested base-2 palindromic primes with seed 0.
+10
19
0, 101, 11001010011, 101100101001101, 10101011001010011010101, 111010101100101001101010111, 1111101010110010100110101011111, 101111111010101100101001101010111111101, 110101111111010101100101001101010111111101011
COMMENTS
Using only base-2 digits 0 and 1, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-2 palindromic primes with seed s -- a(1) being not prime, of course.
Guide to related sequences
base seed base-b repr. base-10 repr.
EXAMPLE
a(3) = 11001010011 = A117697(15) is the least prime having a(2) = 101 in its middle. Triangular format:
0
101
11001010011
101100101001101
10101011001010011010101
111010101100101001101010111
1111101010110010100110101011111
MATHEMATICA
s = {0}; base = 2; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262627 *)
Map[FromDigits[ToString[#], base] &, s] (* A262628 *)
a(1) = 2; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring.
+10
13
2, 727, 37273, 333727333, 93337273339, 309333727333903, 1830933372733390381, 92183093337273339038129, 3921830933372733390381293, 1333921830933372733390381293331, 18133392183093337273339038129333181
REFERENCES
G. L. Honaker, Jr. and Chris K. Caldwell, Palindromic Prime Pyramids, J. Recreational Mathematics, Vol. 30(3) 169-176, 1999-2000.
EXAMPLE
As a triangle:
.........2
........727
.......37273
.....333727333
....93337273339
..309333727333903
1830933372733390381
MATHEMATICA
d[n_] := IntegerDigits[n]; t = {x = 2}; Do[i = 1; While[! PrimeQ[y = FromDigits[Flatten[{z = d[i], d[x], Reverse[z]}]]], i++]; AppendTo[t, x = y], {n, 10}]; t (* Jayanta Basu, Jun 24 2013 *)
PROG
(Python)
from gmpy2 import digits, mpz, is_prime
for _ in range(30):
m, ps = 1, digits(p)
s = mpz('1'+ps+'1')
while not is_prime(s):
m += 1
ms = digits(m)
s = mpz(ms+ps+ms[::-1])
p = s
a(1) = 3; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring.
+10
4
3, 131, 11311, 121131121, 1212113112121, 36121211311212163, 303612121131121216303, 7230361212113112121630327, 30723036121211311212163032703, 723072303612121131121216303270327, 1472307230361212113112121630327032741, 114723072303612121131121216303270327411
COMMENTS
The minimal nested palindromic primes with seed 3; see A261881 for a guide to related sequences.
EXAMPLE
As a triangle:
........3
.......131
......11311
....121131121
..1212113112121
36121211311212163
MATHEMATICA
s = {3}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {15}]; s
Minimal nested palindromic base-4 primes with seed 3; see Comments.
+10
4
3, 131, 11311, 121131121, 1212113112121, 312121131121213, 101312121131121213101, 11131013121211311212131013111, 31311131013121211311212131013111313, 1011313111310131212113112121310131113131101, 310113131113101312121131121213101311131311013
COMMENTS
Using only base-4 digits 0,1,2,3, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-4 primes with seed s.
EXAMPLE
a(3) = 11311 is the least base-4 prime having a(2) = 131 in its middle.
Triangular format:
3
131
11311
121131121
1212113112121
312121131121213
MATHEMATICA
s = {3}; base = 4; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262639 *)
Map[FromDigits[ToString[#], base] &, s] (* A262640 *)
Minimal nested palindromic base-6 primes with seed 0; see Comments.
+10
4
0, 101, 5110115, 13511011531, 1135110115311, 111351101153111, 152111351101153111251, 5215211135110115311125125, 1025215211135110115311125125201, 1431025215211135110115311125125201341, 1111431025215211135110115311125125201341111
COMMENTS
Using only base-6 digits 0,1,2,3,4,5, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-6 primes with seed s.
EXAMPLE
a(3) = 5110115 is the least base-6 prime having a(2) = 101 in its middle.
Triangular format:
0
101
5110115
13511011531
1135110115311
111351101153111
MATHEMATICA
s = {0}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262645 *)
Map[FromDigits[ToString[#], base] &, s] (* A262646 *)
Minimal nested palindromic base-6 primes with seed 3; see Comments.
+10
4
3, 11311, 121131121, 5312113112135, 14531211311213541, 1145312113112135411, 51114531211311213541115, 5511145312113112135411155, 50551114531211311213541115505, 115055111453121131121354111550511, 51150551114531211311213541115505115
COMMENTS
Using only base-6 digits 0,1,2,3,4,5, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-6 primes with seed s.
EXAMPLE
a(3) = 121131121 is the least base-6 prime having a(2) = 11311 in its middle. Triangular format:
3
11311
121131121
5312113112135
14531211311213541
MATHEMATICA
s = {3}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262651 *)
Map[FromDigits[ToString[#], base] &, s] (* A262652 *)
Minimal nested palindromic primes with seed 1.
+10
3
1, 313, 93139, 3931393, 11393139311, 1113931393111, 17111393139311171, 331711139313931117133, 3333171113931393111713333, 133331711139313931117133331, 1813333171113931393111713333181, 1951813333171113931393111713333181591
COMMENTS
Let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic primes with seed s.
EXAMPLE
As a symmetric triangle:
......1
.....313
....93139
...3931393
.11393139311
1113931393111
MATHEMATICA
s = {1}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {15}]; s
CROSSREFS
Cf. A261881 (seed 0 with guide to related sequences).
Minimal nested base-2 palindromic primes with seed 1.
+10
3
1, 111, 11111, 1111111, 1001111111001, 1001001111111001001, 111110010011111110010011111, 111111110010011111110010011111111, 100111111110010011111110010011111111001, 1011010011111111001001111111001001111111100101101
COMMENTS
Using only base-2 digits 0 and 1, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-2 palindromic primes with seed s.
EXAMPLE
a(5) = 1001111111001 = A117697(20) is the least base-2 prime having a(4) = 1111111 = A117697(8) in its middle. Triangular format:
1
111
11111
1111111
1001111111001
1001001111111001001
111110010011111110010011111
MATHEMATICA
s = {1}; base = 2; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262629 *)
Map[FromDigits[ToString[#], base] &, s] (* A262630 *)
Minimal nested base-3 palindromic primes with seed 1.
+10
3
1, 111, 1111111, 22111111122, 1221111111221, 112211111112211, 2111221111111221112, 2102111221111111221112012, 1212102111221111111221112012121, 20121210211122111111122111201212102, 2002201212102111221111111221112012121022002
COMMENTS
Using only base-3 digits 0,1,2, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-3 palindromic primes with seed s.
EXAMPLE
a(4) = 22111111122 is the least base-3 prime having a(3) = 1111111 in its middle. Triangular format:
1
111
1111111
22111111122
1221111111221
112211111112211
MATHEMATICA
s = {1}; base = 3; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262631 *)
Map[FromDigits[ToString[#], base] &, s] (* A262632 *)
Minimal nested base-4 palindromic primes with seed 0.
+10
3
0, 101, 31013, 3310133, 1023310133201, 3331023310133201333, 3223331023310133201333223, 1133223331023310133201333223311, 100311332233310233101332013332233113001, 10231003113322333102331013320133322331130013201
COMMENTS
Using only base-4 digits 0,1,2,3, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-4 palindromic primes with seed s.
EXAMPLE
a(3) = 31013 is the least base-4 prime having a(2) = 101 in its middle. Triangular format:
0
101
31013
3310133
1023310133201
3331023310133201333,
MATHEMATICA
s = {0}; base = 4; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262633 *)
Map[FromDigits[ToString[#], base] &, s] (* A262634 *)
Search completed in 0.015 seconds
|