[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a261881 -id:a261881
     Sort: relevance | references | number | modified | created      Format: long | short | data
Minimal nested base-2 palindromic primes with seed 0.
+10
19
0, 101, 11001010011, 101100101001101, 10101011001010011010101, 111010101100101001101010111, 1111101010110010100110101011111, 101111111010101100101001101010111111101, 110101111111010101100101001101010111111101011
OFFSET
1,2
COMMENTS
Using only base-2 digits 0 and 1, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-2 palindromic primes with seed s -- a(1) being not prime, of course.
Guide to related sequences
base seed base-b repr. base-10 repr.
LINKS
EXAMPLE
a(3) = 11001010011 =A117697(15) is the least prime having a(2) = 101 in its middle. Triangular format:
0
101
11001010011
101100101001101
10101011001010011010101
111010101100101001101010111
1111101010110010100110101011111
MATHEMATICA
s = {0}; base = 2; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262627 *)
Map[FromDigits[ToString[#], base] &, s] (* A262628 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A117697, A261881 (base 10), A262628-A262662.
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Oct 02 2015
STATUS
approved
a(1) = 2; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring.
+10
13
2, 727, 37273, 333727333, 93337273339, 309333727333903, 1830933372733390381, 92183093337273339038129, 3921830933372733390381293, 1333921830933372733390381293331, 18133392183093337273339038129333181
OFFSET
1,1
REFERENCES
G. L. Honaker, Jr. and Chris K. Caldwell, Palindromic Prime Pyramids, J. Recreational Mathematics, Vol. 30(3) 169-176, 1999-2000.
LINKS
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 18133...33181 (35-digits)
G. L. Honaker, Jr. & C. K. Caldwell, Palindromic Prime Pyramids
G. L. Honaker, Jr. & C. K. Caldwell, Supplement to "Palindromic Prime Pyramids"
Ivars Peterson, Primes, Palindromes, and Pyramids, Science News.
Inder J. Taneja, Palindromic Prime Embedded Trees, RGMIA Res. Rep. Coll. 20 (2017), Art. 124.
Inder J. Taneja, Same Digits Embedded Palprimes, RGMIA Research Report Collection (2018) Vol. 21, Article 75, 1-47.
EXAMPLE
As a triangle:
.........2
........727
.......37273
.....333727333
....93337273339
..309333727333903
1830933372733390381
MATHEMATICA
d[n_] := IntegerDigits[n]; t = {x = 2}; Do[i = 1; While[! PrimeQ[y = FromDigits[Flatten[{z = d[i], d[x], Reverse[z]}]]], i++]; AppendTo[t, x = y], {n, 10}]; t (* Jayanta Basu, Jun 24 2013 *)
PROG
(Python)
from gmpy2 import digits, mpz, is_prime
A053600_list, p = [2], 2
for _ in range(30):
m, ps = 1, digits(p)
s = mpz('1'+ps+'1')
while not is_prime(s):
m += 1
ms = digits(m)
s = mpz(ms+ps+ms[::-1])
p = s
A053600_list.append(int(p)) # Chai Wah Wu, Apr 09 2015
KEYWORD
base,nonn
AUTHOR
G. L. Honaker, Jr., Jan 20 2000
STATUS
approved
a(1) = 3; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring.
+10
4
3, 131, 11311, 121131121, 1212113112121, 36121211311212163, 303612121131121216303, 7230361212113112121630327, 30723036121211311212163032703, 723072303612121131121216303270327, 1472307230361212113112121630327032741, 114723072303612121131121216303270327411
OFFSET
1,1
COMMENTS
The minimal nested palindromic primes with seed 3; see A261881 for a guide to related sequences.
LINKS
EXAMPLE
As a triangle:
........3
.......131
......11311
....121131121
..1212113112121
36121211311212163
MATHEMATICA
s = {3}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {15}]; s
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Benoit Cloitre, May 04 2003
EXTENSIONS
Name changed by Arkadiusz Wesolowski, Sep 15 2011
More terms from Clark Kimberling, Sep 23 2015
STATUS
approved
Minimal nested palindromic base-4 primes with seed 3; see Comments.
+10
4
3, 131, 11311, 121131121, 1212113112121, 312121131121213, 101312121131121213101, 11131013121211311212131013111, 31311131013121211311212131013111313, 1011313111310131212113112121310131113131101, 310113131113101312121131121213101311131311013
OFFSET
1,1
COMMENTS
Using only base-4 digits 0,1,2,3, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-4 primes with seed s.
LINKS
EXAMPLE
a(3) = 11311 is the least base-4 prime having a(2) = 131 in its middle.
Triangular format:
3
131
11311
121131121
1212113112121
312121131121213
MATHEMATICA
s = {3}; base = 4; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262639 *)
Map[FromDigits[ToString[#], base] &, s] (* A262640 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262640, A262627.
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Oct 24 2015
STATUS
approved
Minimal nested palindromic base-6 primes with seed 0; see Comments.
+10
4
0, 101, 5110115, 13511011531, 1135110115311, 111351101153111, 152111351101153111251, 5215211135110115311125125, 1025215211135110115311125125201, 1431025215211135110115311125125201341, 1111431025215211135110115311125125201341111
OFFSET
1,2
COMMENTS
Using only base-6 digits 0,1,2,3,4,5, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-6 primes with seed s.
LINKS
EXAMPLE
a(3) = 5110115 is the least base-6 prime having a(2) = 101 in its middle.
Triangular format:
0
101
5110115
13511011531
1135110115311
111351101153111
MATHEMATICA
s = {0}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262645 *)
Map[FromDigits[ToString[#], base] &, s] (* A262646 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262646, A262627.
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Oct 24 2015
STATUS
approved
Minimal nested palindromic base-6 primes with seed 3; see Comments.
+10
4
3, 11311, 121131121, 5312113112135, 14531211311213541, 1145312113112135411, 51114531211311213541115, 5511145312113112135411155, 50551114531211311213541115505, 115055111453121131121354111550511, 51150551114531211311213541115505115
OFFSET
1,1
COMMENTS
Using only base-6 digits 0,1,2,3,4,5, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-6 primes with seed s.
LINKS
EXAMPLE
a(3) = 121131121 is the least base-6 prime having a(2) = 11311 in its middle. Triangular format:
3
11311
121131121
5312113112135
14531211311213541
MATHEMATICA
s = {3}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262651 *)
Map[FromDigits[ToString[#], base] &, s] (* A262652 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262652, A262627.
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Oct 27 2015
STATUS
approved
Minimal nested palindromic primes with seed 1.
+10
3
1, 313, 93139, 3931393, 11393139311, 1113931393111, 17111393139311171, 331711139313931117133, 3333171113931393111713333, 133331711139313931117133331, 1813333171113931393111713333181, 1951813333171113931393111713333181591
OFFSET
1,2
COMMENTS
Let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic primes with seed s.
LINKS
EXAMPLE
As a symmetric triangle:
......1
.....313
....93139
...3931393
.11393139311
1113931393111
MATHEMATICA
s = {1}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {15}]; s
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (seed 0 with guide to related sequences).
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Sep 17 2015
STATUS
approved
Minimal nested base-2 palindromic primes with seed 1.
+10
3
1, 111, 11111, 1111111, 1001111111001, 1001001111111001001, 111110010011111110010011111, 111111110010011111110010011111111, 100111111110010011111110010011111111001, 1011010011111111001001111111001001111111100101101
OFFSET
1,2
COMMENTS
Using only base-2 digits 0 and 1, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-2 palindromic primes with seed s.
LINKS
EXAMPLE
a(5) = 1001111111001 = A117697(20) is the least base-2 prime having a(4) = 1111111 = A117697(8) in its middle. Triangular format:
1
111
11111
1111111
1001111111001
1001001111111001001
111110010011111110010011111
MATHEMATICA
s = {1}; base = 2; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262629 *)
Map[FromDigits[ToString[#], base] &, s] (* A262630 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262627. Subsequence of A117697 (expect a(1)).
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Oct 02 2015
STATUS
approved
Minimal nested base-3 palindromic primes with seed 1.
+10
3
1, 111, 1111111, 22111111122, 1221111111221, 112211111112211, 2111221111111221112, 2102111221111111221112012, 1212102111221111111221112012121, 20121210211122111111122111201212102, 2002201212102111221111111221112012121022002
OFFSET
1,2
COMMENTS
Using only base-3 digits 0,1,2, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-3 palindromic primes with seed s.
LINKS
EXAMPLE
a(4) = 22111111122 is the least base-3 prime having a(3) = 1111111 in its middle. Triangular format:
1
111
1111111
22111111122
1221111111221
112211111112211
MATHEMATICA
s = {1}; base = 3; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262631 *)
Map[FromDigits[ToString[#], base] &, s] (* A262632 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262632, A262627. Subset of A117698 (except a(1)).
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Oct 02 2015
STATUS
approved
Minimal nested base-4 palindromic primes with seed 0.
+10
3
0, 101, 31013, 3310133, 1023310133201, 3331023310133201333, 3223331023310133201333223, 1133223331023310133201333223311, 100311332233310233101332013332233113001, 10231003113322333102331013320133322331130013201
OFFSET
1,2
COMMENTS
Using only base-4 digits 0,1,2,3, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-4 palindromic primes with seed s.
LINKS
EXAMPLE
a(3) = 31013 is the least base-4 prime having a(2) = 101 in its middle. Triangular format:
0
101
31013
3310133
1023310133201
3331023310133201333,
MATHEMATICA
s = {0}; base = 4; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262633 *)
Map[FromDigits[ToString[#], base] &, s] (* A262634 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262634, A262627. Subsequence of A117699.
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Oct 02 2015
STATUS
approved

Search completed in 0.015 seconds