[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a262627 -id:a262627
     Sort: relevance | references | number | modified | created      Format: long | short | data
Base-10 representation of 0 and the primes at A262627.
+20
2
0, 5, 1619, 22861, 5608661, 123097943, 2103004511, 411605194237, 29681120620523, 8356197277826743, 141511180168198879, 23016765965614427641, 30251327028834944270131, 371385619022538141977254297, 124784413675757116661951994259
OFFSET
1,2
LINKS
EXAMPLE
n A262627(n) base-10 representation
1 0 0
2 101 5
3 11001010011 1619
MATHEMATICA
s = {0}; base = 2; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262627 *)
Map[FromDigits[ToString[#], base] &, s] (* A262628 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A262627. Subsequence of A016041 (except a(1)).
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Oct 02 2015
STATUS
approved
Minimal nested palindromic base-4 primes with seed 3; see Comments.
+10
4
3, 131, 11311, 121131121, 1212113112121, 312121131121213, 101312121131121213101, 11131013121211311212131013111, 31311131013121211311212131013111313, 1011313111310131212113112121310131113131101, 310113131113101312121131121213101311131311013
OFFSET
1,1
COMMENTS
Using only base-4 digits 0,1,2,3, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-4 primes with seed s.
LINKS
EXAMPLE
a(3) = 11311 is the least base-4 prime having a(2) = 131 in its middle.
Triangular format:
3
131
11311
121131121
1212113112121
312121131121213
MATHEMATICA
s = {3}; base = 4; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262639 *)
Map[FromDigits[ToString[#], base] &, s] (* A262640 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262640, A262627.
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Oct 24 2015
STATUS
approved
Minimal nested palindromic base-6 primes with seed 0; see Comments.
+10
4
0, 101, 5110115, 13511011531, 1135110115311, 111351101153111, 152111351101153111251, 5215211135110115311125125, 1025215211135110115311125125201, 1431025215211135110115311125125201341, 1111431025215211135110115311125125201341111
OFFSET
1,2
COMMENTS
Using only base-6 digits 0,1,2,3,4,5, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-6 primes with seed s.
LINKS
EXAMPLE
a(3) = 5110115 is the least base-6 prime having a(2) = 101 in its middle.
Triangular format:
0
101
5110115
13511011531
1135110115311
111351101153111
MATHEMATICA
s = {0}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262645 *)
Map[FromDigits[ToString[#], base] &, s] (* A262646 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262646, A262627.
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Oct 24 2015
STATUS
approved
Minimal nested palindromic base-6 primes with seed 3; see Comments.
+10
4
3, 11311, 121131121, 5312113112135, 14531211311213541, 1145312113112135411, 51114531211311213541115, 5511145312113112135411155, 50551114531211311213541115505, 115055111453121131121354111550511, 51150551114531211311213541115505115
OFFSET
1,1
COMMENTS
Using only base-6 digits 0,1,2,3,4,5, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-6 primes with seed s.
LINKS
EXAMPLE
a(3) = 121131121 is the least base-6 prime having a(2) = 11311 in its middle. Triangular format:
3
11311
121131121
5312113112135
14531211311213541
MATHEMATICA
s = {3}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262651 *)
Map[FromDigits[ToString[#], base] &, s] (* A262652 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262652, A262627.
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Oct 27 2015
STATUS
approved
Minimal nested base-2 palindromic primes with seed 1.
+10
3
1, 111, 11111, 1111111, 1001111111001, 1001001111111001001, 111110010011111110010011111, 111111110010011111110010011111111, 100111111110010011111110010011111111001, 1011010011111111001001111111001001111111100101101
OFFSET
1,2
COMMENTS
Using only base-2 digits 0 and 1, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-2 palindromic primes with seed s.
LINKS
EXAMPLE
a(5) = 1001111111001 = A117697(20) is the least base-2 prime having a(4) = 1111111 = A117697(8) in its middle. Triangular format:
1
111
11111
1111111
1001111111001
1001001111111001001
111110010011111110010011111
MATHEMATICA
s = {1}; base = 2; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262629 *)
Map[FromDigits[ToString[#], base] &, s] (* A262630 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262627. Subsequence of A117697 (expect a(1)).
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Oct 02 2015
STATUS
approved
Minimal nested base-3 palindromic primes with seed 1.
+10
3
1, 111, 1111111, 22111111122, 1221111111221, 112211111112211, 2111221111111221112, 2102111221111111221112012, 1212102111221111111221112012121, 20121210211122111111122111201212102, 2002201212102111221111111221112012121022002
OFFSET
1,2
COMMENTS
Using only base-3 digits 0,1,2, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-3 palindromic primes with seed s.
LINKS
EXAMPLE
a(4) = 22111111122 is the least base-3 prime having a(3) = 1111111 in its middle. Triangular format:
1
111
1111111
22111111122
1221111111221
112211111112211
MATHEMATICA
s = {1}; base = 3; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262631 *)
Map[FromDigits[ToString[#], base] &, s] (* A262632 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262632, A262627. Subset of A117698 (except a(1)).
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Oct 02 2015
STATUS
approved
Minimal nested base-4 palindromic primes with seed 0.
+10
3
0, 101, 31013, 3310133, 1023310133201, 3331023310133201333, 3223331023310133201333223, 1133223331023310133201333223311, 100311332233310233101332013332233113001, 10231003113322333102331013320133322331130013201
OFFSET
1,2
COMMENTS
Using only base-4 digits 0,1,2,3, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-4 palindromic primes with seed s.
LINKS
EXAMPLE
a(3) = 31013 is the least base-4 prime having a(2) = 101 in its middle. Triangular format:
0
101
31013
3310133
1023310133201
3331023310133201333,
MATHEMATICA
s = {0}; base = 4; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262633 *)
Map[FromDigits[ToString[#], base] &, s] (* A262634 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262634, A262627. Subsequence of A117699.
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Oct 02 2015
STATUS
approved
Minimal nested base-4 palindromic primes with seed 1.
+10
3
1, 12121, 111212111, 31112121113, 133111212111331, 123133111212111331321, 303123133111212111331321303, 3030312313311121211133132130303, 30303031231331112121113313213030303, 3303030312313311121211133132130303033, 11330303031231331112121113313213030303311
OFFSET
1,2
COMMENTS
Using only base-4 digits 0,1,2,3, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-4 palindromic primes with seed s.
LINKS
EXAMPLE
a(3) = 111212111 is the least base-4 prime having a(2) = 12121 in its middle. Triangular format:
1
12121
111212111
31112121113
133111212111331
123133111212111331321
MATHEMATICA
s = {1}; base = 4; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262635 *)
Map[FromDigits[ToString[#], base] &, s] (* A262636 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262636, A262627. Subsequence of A117699.
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Oct 02 2015
STATUS
approved
Minimal nested palindromic base-4 primes with seed 2; see Comments.
+10
3
2, 323, 3332333, 333323333, 33333233333, 103333323333301, 1210333332333330121, 100212103333323333301212001, 3310021210333332333330121200133, 3303310021210333332333330121200133033, 11330331002121033333233333012120013303311
OFFSET
1,1
COMMENTS
Using only base-4 digits 0,1,2,3, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-4 primes with seed s.
LINKS
EXAMPLE
a(3) = 3332333 is the least base-4 prime having a(2) = 323 in its middle.
Triangular format:
2
323
3332333
333323333
33333233333
103333323333301
1210333332333330121
MATHEMATICA
s = {2}; base = 4; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262637 *)
Map[FromDigits[ToString[#], base] &, s] (* A262638 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262638, A262627.
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Oct 24 2015
STATUS
approved
Minimal nested palindromic base-5 primes with seed 1; see Comments.
+10
3
1, 111, 41114, 1411141, 20141114102, 12120141114102121, 24012120141114102121042, 142401212014111410212104241, 41424012120141114102121042414, 314142401212014111410212104241413, 4131414240121201411141021210424141314, 30413141424012120141114102121042414131403
OFFSET
1,2
COMMENTS
Using only base-5 digits 0,1,2,3,4, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-5 primes with seed s.
LINKS
EXAMPLE
a(3) = 41114 is the least base-5 prime having a(2) = 111 in its middle.
Triangular format:
1
111
41114
1411141
20141114102
12120141114102121
24012120141114102121042
MATHEMATICA
s = {1}; base = 5; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262641 *)
Map[FromDigits[ToString[#], base] &, s] (* A262642 *)
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
Cf. A261881 (base 10), A262627, A262642.
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Oct 24 2015
STATUS
approved

Search completed in 0.008 seconds