Displaying 1-5 of 5 results found.
page
1
Numbers that are congruent to {4, 20} mod 24.
+0
7
4, 20, 28, 44, 52, 68, 76, 92, 100, 116, 124, 140, 148, 164, 172, 188, 196, 212, 220, 236, 244, 260, 268, 284, 292, 308, 316, 332, 340, 356, 364, 380, 388, 404, 412, 428, 436, 452, 460, 476, 484, 500, 508, 524, 532, 548, 556, 572, 580, 596, 604, 620, 628
FORMULA
a(n) = 2*(6*n + (-1)^n - 3).
G.f.: 4*x*(1 + 4*x + x^2) / ((1 + x)*(1 - x)^2). - Bruno Berselli, Oct 23 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/24. - Amiram Eldar, Dec 31 2021
E.g.f.: 2*(2 + (6*x - 3)*exp(x) + exp(-x)). - David Lovler, Sep 05 2022
MATHEMATICA
A[n_] := A[n] = Sum[a b, {a, 1, n}, {b, a + 1, n}]; Select[Range[200], Mod[A[#], #]/# == 3/4 &]
Table[2 (6 n + (-1)^n - 3), {n, 1, 60}] (* Bruno Berselli, Oct 23 2015 *)
LinearRecurrence[{1, 1, -1}, {4, 20, 28}, 60] (* Harvey P. Dale, Jul 19 2016 *)
PROG
(PARI) vector(100, n, 2*(6*n+(-1)^n-3)) \\ Altug Alkan, Oct 23 2015
Numbers that are congruent to {8, 16} mod 24.
+0
6
8, 16, 32, 40, 56, 64, 80, 88, 104, 112, 128, 136, 152, 160, 176, 184, 200, 208, 224, 232, 248, 256, 272, 280, 296, 304, 320, 328, 344, 352, 368, 376, 392, 400, 416, 424, 440, 448, 464, 472, 488, 496, 512, 520, 536, 544, 560, 568, 584, 592, 608, 616, 632
COMMENTS
Original name: Numbers n such that n/ A259748(n) = 4.
FORMULA
a(n) = 12*n-2*(-1)^n-6.
a(n) = a(n-1)+a(n-2)-a(n-3) for n>3.
G.f.: 8*x*(1+x+x^2) / ((1-x)^2*(1+x)).
(End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/72. - Amiram Eldar, Dec 31 2021
E.g.f.: 2*(4 + (6*x - 3)*exp(x) - exp(-x)). - David Lovler, Sep 05 2022
MATHEMATICA
A[n_] := A[n] = Sum[a b, {a, 1, n}, {b, a + 1, n}] ; Select[Range[600], Mod[A[#], #]/# == 1/4 & ]
PROG
(PARI) Vec(8*x*(1+x+x^2)/((1-x)^2*(1+x)) + O(x^100)) \\ Colin Barker, Aug 26 2016
Numbers that are congruent to {1,2,5,7,10,11,13,17,19,23} mod 24.
+0
6
1, 2, 5, 7, 10, 11, 13, 17, 19, 23, 25, 26, 29, 31, 34, 35, 37, 41, 43, 47, 49, 50, 53, 55, 58, 59, 61, 65, 67, 71, 73, 74, 77, 79, 82, 83, 85, 89, 91, 95, 97, 98, 101, 103, 106, 107, 109, 113, 115, 119, 121, 122, 125, 127, 130, 131, 133, 137, 139, 143, 145
COMMENTS
Original name: Numbers n such that A259748(n) = 0.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-2,2,-2,2,-1).
FORMULA
A259748(a(n)) = Sum_{x*y: x,y in Z/a(n)Z, x<>y} = 0.
G.f.: x*(1+x^2)*(1+2*x^2-x^3+2*x^4-2*x^5+3*x^6+x^7) / ((1-x)^2*(1-x+x^2-x^3+x^4)*(1+x+x^2+x^3+x^4)). - Colin Barker, Aug 25 2016
MATHEMATICA
A[n_] := A[n] = Sum[a b, {a, 1, n}, {b, a + 1, n}] ; Select[Range[600], Mod[A[#], #] == 0 & ]
Rest@ CoefficientList[Series[x (1 + x^2) (1 + 2 x^2 - x^3 + 2 x^4 - 2 x^5 + 3 x^6 + x^7)/((1 - x)^2*(1 - x + x^2 - x^3 + x^4) (1 + x + x^2 + x^3 + x^4)), {x, 0, 61}], x] (* Michael De Vlieger, Aug 25 2016 *)
Select[Range[150], MemberQ[{1, 2, 5, 7, 10, 11, 13, 17, 19, 23}, Mod[#, 24]]&] (* or *) LinearRecurrence[{2, -2, 2, -2, 2, -2, 2, -2, 2, -1}, {1, 2, 5, 7, 10, 11, 13, 17, 19, 23}, 70] (* Harvey P. Dale, Jan 15 2022 *)
PROG
(PARI) Vec(x*(1+x^2)*(1+2*x^2-x^3+2*x^4-2*x^5+3*x^6+x^7)/((1-x)^2*(1-x+x^2-x^3+x^4)*(1+x+x^2+x^3+x^4)) + O(x^100)) \\ Colin Barker, Aug 25 2016
Numbers that are congruent to {3,9,15,18,21} mod 24.
+0
6
3, 9, 15, 18, 21, 27, 33, 39, 42, 45, 51, 57, 63, 66, 69, 75, 81, 87, 90, 93, 99, 105, 111, 114, 117, 123, 129, 135, 138, 141, 147, 153, 159, 162, 165, 171, 177, 183, 186, 189, 195, 201, 207, 210, 213, 219, 225, 231, 234, 237, 243, 249, 255, 258, 261, 267
COMMENTS
Original name: Numbers n such that n/ A259748(n) = 3/2.
FORMULA
a(n) = a(n-1)+a(n-5)-a(n-6) for n>6.
G.f.: 3*x*(1+x)*(1+x+x^2+x^4) / ((1-x)^2*(1+x+x^2+x^3+x^4)).
(End)
MATHEMATICA
A[n_] := A[n] = Sum[a b, {a, 1, n}, {b, a + 1, n}]; Select[Range[200], Mod[A[#], #]/# == 2/3 &]
Rest@ CoefficientList[Series[3 x (1 + x) (1 + x + x^2 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)), {x, 0, 56}], x] (* Michael De Vlieger, Aug 25 2016 *)
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {3, 9, 15, 18, 21, 27}, 60] (* Harvey P. Dale, Aug 30 2016 *)
PROG
(PARI) Vec(3*x*(1+x)*(1+x+x^2+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4)) + O(x^100)) \\ Colin Barker, Aug 25 2016
a(n) = (Sum_{0<x<y<n} x*y) mod n.
+0
9
0, 0, 2, 3, 0, 1, 0, 2, 6, 0, 0, 5, 0, 7, 10, 4, 0, 12, 0, 15, 14, 11, 0, 22, 0, 0, 18, 21, 0, 5, 0, 8, 22, 0, 0, 15, 0, 19, 26, 10, 0, 28, 0, 33, 30, 23, 0, 44, 0, 0, 34, 39, 0, 9, 0, 14, 38, 0, 0, 25, 0, 31, 42, 16, 0, 44, 0, 51, 46, 35, 0, 66, 0, 0, 50
COMMENTS
{a(n)/n: n=1,2,...} = {0, 1/6, 1/4, 5/12, 1/2, 2/3, 3/4, 11/12}.
a(n)/n = 0 iff n mod 24 = 1,2,5,7,10,11,13,17,19,23 ( A259749);
a(n)/n = 1/6 iff n mod 24 = 6 ( A259752);
a(n)/n = 1/4 iff n mod 24 = 8,16 ( A259751);
a(n)/n = 5/12 iff n mod 24 = 12 ( A073762);
a(n)/n = 1/2 iff n mod 24 = 14,22 ( A259750);
a(n)/n = 2/3 iff n mod 24 = 3,9,15,18,21 ( A259754);
a(n)/n = 3/4 iff n mod 24 = 4,20 ( A259755);
a(n)/n = 11/12 iff n mod 24 = 0 ( A008606).
(End)
FORMULA
a(n) = A000914(n) mod n = (1/24)*(-1 + n)*n*(1 + n)*(2 + 3*n) mod n.
a(24k) = 22k; a(24k+1) = 0; a(24k+2) = 0; a(24k+3) = 16k+2; a(24k+4) = 18k+3; a(24k+5) = 0; a(24k+6) = 4k+1, a(24k+7) = 0; a(24k+8) = 6k+2; a(24k+9) = 16k+6; a(24k+10) = 0; a(24k+11) = 0; a(24k+12) = 10k+5; a(24k+13) = 0; a(24k+14) = 12k+7; a(24k+15) = 16k+10; a(24k+16) = 6k+4; a(24k+17) = 0; a(24k+18) = 16k+12; a(24k+19) = 0; a(24k+20) = 18k+15; a(24k+21) = 16k+14; a(24k+22) = 12k+11; a(24k+23) = 0. - Danny Rorabaugh, Oct 22 2015
MATHEMATICA
A[n_]:=Sum[a b, {a, 1, n}, {b, a+1, n}]; Table[Mod[A[n], n], {n, 1, 122}]
PROG
(PARI) vector(100, n, ((n-1)*n*(n+1)*(3*n+2)/24) % n) \\ Altug Alkan, Oct 22 2015
CROSSREFS
A008606 (n such that n/a(n)=12/11).
Search completed in 0.005 seconds
|