[go: up one dir, main page]

login
A259755
Numbers that are congruent to {4, 20} mod 24.
7
4, 20, 28, 44, 52, 68, 76, 92, 100, 116, 124, 140, 148, 164, 172, 188, 196, 212, 220, 236, 244, 260, 268, 284, 292, 308, 316, 332, 340, 356, 364, 380, 388, 404, 412, 428, 436, 452, 460, 476, 484, 500, 508, 524, 532, 548, 556, 572, 580, 596, 604, 620, 628
OFFSET
1,1
FORMULA
a(n) = 2*(6*n + (-1)^n - 3).
A259748(a(n))/a(n) = 3/4.
a(n) = 4*A007310(n). - Michel Marcus, Sep 22 2015
G.f.: 4*x*(1 + 4*x + x^2) / ((1 + x)*(1 - x)^2). - Bruno Berselli, Oct 23 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/24. - Amiram Eldar, Dec 31 2021
E.g.f.: 2*(2 + (6*x - 3)*exp(x) + exp(-x)). - David Lovler, Sep 05 2022
MATHEMATICA
A[n_] := A[n] = Sum[a b, {a, 1, n}, {b, a + 1, n}]; Select[Range[200], Mod[A[#], #]/# == 3/4 &]
Table[2 (6 n + (-1)^n - 3), {n, 1, 60}] (* Bruno Berselli, Oct 23 2015 *)
LinearRecurrence[{1, 1, -1}, {4, 20, 28}, 60] (* Harvey P. Dale, Jul 19 2016 *)
PROG
(Magma) [2*(6*n+(-1)^n-3): n in [1..60]]; // Vincenzo Librandi, Aug 27 2015
(PARI) vector(100, n, 2*(6*n+(-1)^n-3)) \\ Altug Alkan, Oct 23 2015
CROSSREFS
Other sequences of numbers k such that A259748(k)/k equals a constant: A008606, A073762, A259749, A259750, A259751, A259752, A259754.
Sequence in context: A202070 A198831 A323040 * A317249 A181433 A079454
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Better name from Danny Rorabaugh, Oct 22 2015
STATUS
approved