[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a256789 -id:a256789
     Sort: relevance | references | number | modified | created      Format: long | short | data
R(k), the minimal alternating Fibonacci representation of k, concatenated for k = 0, 1, 2,....
+10
15
0, 1, 2, 3, 5, -1, 5, 8, -2, 8, -1, 8, 13, -5, 1, 13, -3, 13, -2, 13, -1, 13, 21, -8, 1, 21, -8, 2, 21, -5, 21, -5, 1, 21, -3, 21, -2, 21, -1, 21, 34, -13, 1, 34, -13, 2, 34, -13, 3, 34, -13, 5, -1, 34, -8, 34, -8, 1, 34, -8, 2, 34, -5, 34, -5, 1, 34, -3, 34
OFFSET
0,3
COMMENTS
Suppose that b = (b(0), b(1), ... ) is an increasing sequence of positive integers satisfying b(0) = 1 and b(n+1) <= 2*b(n) for n >= 0. Let B(n) be the least b(m) >= n. Let R(0) = 1, and for n > 0, let R(n) = B(n) - R(B(n) - n). The resulting sum of the form R(n) = B(n) - B(m(1)) + B(m(2)) - ... + ((-1)^k)*B(k) is introduced here as the minimal alternating b-representation of n. The sum B(n) + B(m(2)) + ... we call the positive part of R(n), and the sum B(m(1)) + B(m(3)) + ... , the nonpositive part of R(n). The number ((-1)^k)*B(k) is the trace of n.
If b(n) = F(n+2), where F = A000045, then the sum is the minimal alternating Fibonacci-representation of n.
LINKS
FORMULA
R(F(k)^2) = F(2k-1) - F(2k-3) + F(2k-5) - ... + d*F(5) + (-1)^k, where d = (-1)^(k+1).
EXAMPLE
R(0) = 0
R(1) = 1
R(2) = 2
R(3) = 3
R(4) = 5 - 1
R(9) = 13 - 5 + 1
R(25) = 34 - 13 + 5 - 1
R(64) = 89 - 34 + 13 - 5 + 1
MATHEMATICA
f[n_] = Fibonacci[n]; ff = Table[f[n], {n, 1, 70}];
s[n_] := Table[f[n + 2], {k, 1, f[n]}];
h[0] = {1}; h[n_] := Join[h[n - 1], s[n]];
g = h[12]; r[0] = {0};
r[n_] := If[MemberQ[ff, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]];
Flatten[Table[r[n], {n, 0, 60}]]
CROSSREFS
Cf. A000045, A255973 (trace), A256656 (numbers with positive trace), A256657 (numbers with nonpositive trace), A256663 (positive part of R(n)), A256664 (nonpositive part of R(n)), A256654, A256696 (minimal alternating binary representations), A255974 (minimal alternating triangular-number representations), A256789 (minimal alternating squares representations).
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, Apr 08 2015
STATUS
approved
R(k), the minimal alternating triangular-number representation of k, concatenated for k = 0, 1, 2,....
+10
10
0, 1, 3, -1, 3, 6, -3, 1, 6, -1, 6, 10, -3, 10, -3, 1, 10, -1, 10, 15, -6, 3, -1, 15, -3, 15, -3, 1, 15, -1, 15, 21, -6, 1, 21, -6, 3, -1, 21, -3, 21, -3, 1, 21, -1, 21, 28, -6, 28, -6, 1, 28, -6, 3, -1, 28, -3, 28, -3, 1, 28, -1, 28, 36, -10, 3, 36, -6, 36
OFFSET
0,3
COMMENTS
Suppose that b = (b(0), b(1), ... ) is an increasing sequence of positive integers satisfying b(0) = 1 and b(n+1) <= 2*b(n) for n >= 0. Let B(n) be the least b(m) >= n. Let R(0) = 1, and for n > 0, let R(n) = B(n) - R(B(n) - n). The resulting sum of the form R(n) = B(n) - B(m(1)) + B(m(2)) - ... + ((-1)^k)*B(k) is the minimal alternating b-representation of n. The sum B(n) + B(m(2)) + ... is the positive part of R(n), and the sum B(m(1)) + B(m(3)) + ... , the nonpositive part of R(n). The number ((-1)^k)*B(k) is the trace of n. If b(n) = n(n+1)/2, the n-th triangular number, then the sum R(n) is the minimal alternating triangular-number representation of n.
LINKS
EXAMPLE
R(0) = 0
R(1) = 1
R(2) = 3 - 1
R(3) = 3
R(4) = 6 - 3 + 1
R(5) = 6 - 1
R(8) = 10 - 3 + 1
R(11) = 15 - 6 + 3 - 1
MATHEMATICA
b[n_] := n (n + 1)/2; bb = Table[b[n], {n, 0, 1000}];
s[n_] := Table[b[n], {k, 1, n}];
h[1] = {1}; h[n_] := Join[h[n - 1], s[n]];
g = h[100]; r[0] = {0};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]]
t = Table[r[n], {n, 0, 120}] (* A255974 actual representations *)
Flatten[t] (* A255974 sequence *)
CROSSREFS
Cf. A000217, A256655 (Fibonacci based), A256696 (binary), A256789 (squares).
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, Apr 11 2015
STATUS
approved
Enhanced squares representations for k = 0, 1, 2, ..., concatenated.
+10
9
0, 1, 2, 3, 4, 4, 1, 4, 2, 4, 3, 4, 3, 1, 9, 9, 1, 9, 2, 9, 3, 9, 4, 9, 4, 1, 9, 4, 2, 16, 16, 1, 16, 2, 16, 3, 16, 4, 16, 4, 1, 16, 4, 2, 16, 4, 3, 16, 4, 3, 1, 25, 25, 1, 25, 2, 25, 3, 25, 4, 25, 4, 1, 25, 4, 2, 25, 4, 3, 25, 4, 3, 1, 25, 9, 25, 9, 1, 36
OFFSET
0,3
COMMENTS
Let B = {0,1,2,3,4,9,16,25,...}, so that B consists of the squares together with 2 and 3. We call B the enhanced basis of squares. Define R(0) = 0 and R(n) = g(n) + R(n - g(n)) for n > 0, where g(n) is the greatest number in B that is <= n. Thus, each n has an enhanced squares representation of the form R(n) = b(m(n)) + b(m(n-1)) + ... + b(m(k)), where b(n) > m(n-1) > ... > m(k) > 0, in which the last term, b(m(k)), is the trace.
The least n for which R(n) has 5 terms is given by R(168) = 144 + 16 + 4 + 3 + 1.
The least n for which R(n) has 6 terms is given by R(7224) = 7056 + 144 + 16 + 4 + 3 + 1.
LINKS
EXAMPLE
R(0) = 0
R(1) = 1
R(2) = 2
R(3) = 3
R(4) = 4
R(8) = 4 + 3 + 1
R(24) = 16 + 4 + 3 + 1
MATHEMATICA
b[n_] := n^2; bb = Insert[Table[b[n], {n, 0, 100}] , 2, 3];
s[n_] := Table[b[n], {k, 1, 2 n + 1}];
h[1] = {0, 1, 2, 3}; h[n_] := Join[h[n - 1], s[n]];
g = h[100]; Take[g, 100]
r[0] = {0}; r[1] = {1}; r[2] = {2}; r[3] = {3}; r[8] = {4, 3, 1};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]];
t = Table[r[n], {n, 0, 120}] (* A256913, before concatenation *)
Flatten[t] (* A256913 *)
Table[Last[r[n]], {n, 0, 120}] (* A256914 *)
Table[Length[r[n]], {n, 0, 200}] (* A256915 *)
PROG
(Haskell)
a256913 n k = a256913_tabf !! n !! k
a256913_row n = a256913_tabf !! n
a256913_tabf = [0] : tail esr where
esr = (map r [0..8]) ++
f 9 (map fromInteger $ drop 3 a000290_list) where
f x gs@(g:hs@(h:_))
| x < h = (g : genericIndex esr (x - g)) : f (x + 1) gs
| otherwise = f x hs
r 0 = []; r 8 = [4, 3, 1]
r x = q : r (x - q) where q = [0, 1, 2, 3, 4, 4, 4, 4, 4] !! x
-- Reinhard Zumkeller, Apr 15 2015
CROSSREFS
Cf. A000290, A256914 (trace), A256915 (number of terms), A256789 (minimal alternating squares representations).
Cf. A257053 (primes).
KEYWORD
nonn,easy,tabf,nice
AUTHOR
Clark Kimberling, Apr 14 2015
STATUS
approved
Trace of n in the minimal alternating squares representation of n.
+10
7
0, 1, -2, -1, 4, -4, 1, 2, -1, 9, -1, 4, -4, 1, 2, -1, 16, 1, -2, -1, 4, -4, 1, 2, -1, 25, 1, -9, 1, -2, -1, 4, -4, 1, 2, -1, 36, 4, -4, 1, -9, 1, -2, -1, 4, -4, 1, 2, -1, 49, -2, -1, 4, -4, 1, -9, 1, -2, -1, 4, -4, 1, 2, -1, 64, -16, 1, -2, -1, 4, -4, 1, -9
OFFSET
0,3
COMMENTS
See A256789 for definitions.
For each positive integer m, the list of 2m numbers between m^2 and (m+1)^2 is repeated between (m+1)^2 and (m+2)^2. Consequently, a limiting sequence is formed by reversing the repeated lists. The limiting sequence is -1, 2, 1, -4, 4, -1, -2, 1, -9, 1, -4, 4, -1, -2, 1, -16, ...
LINKS
EXAMPLE
R(0) = 0, so a(0) = 0;
R(1) = 1, so a(1) = 1;
R(2) = 4 - 2, so a(2) = -2;
R(7) = 9 - 4 + 2, so a(7) = 2;
R(89) = 100 - 16 + 9 - 4, so a(89) = -4.
MATHEMATICA
b[n_] := n^2; bb = Table[b[n], {n, 0, 1000}];
s[n_] := Table[b[n], {k, 1, 2 n - 1}];
h[1] = {1}; h[n_] := Join[h[n - 1], s[n]];
g = h[100]; r[0] = {0}; r[1] = {1}; r[2] = {4, -2};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]];
Table[r[n], {n, 0, 120}] (* A256789 *)
Flatten[Table[Last[r[n]], {n, 0, 100}]] (* A256791 *)
CROSSREFS
Cf. A256789.
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, Apr 13 2015
STATUS
approved
Numbers whose minimal alternating squares representation has positive trace.
+10
4
1, 4, 6, 7, 9, 11, 13, 14, 16, 17, 20, 22, 23, 25, 26, 28, 31, 33, 34, 36, 37, 39, 41, 44, 46, 47, 49, 52, 54, 56, 59, 61, 62, 64, 66, 69, 71, 73, 76, 78, 79, 81, 82, 85, 88, 90, 92, 95, 97, 98, 100, 102, 103, 106, 109, 111, 113, 116, 118, 119, 121, 123, 125
OFFSET
1,2
COMMENTS
See A256789 for definitions.
LINKS
EXAMPLE
R(1) = 1; trace = 1, positive.
R(2) = 4 - 2; trace = -2, negative.
R(3) = 4 - 1; trace = -1, negative.
MATHEMATICA
b[n_] := n^2; bb = Table[b[n], {n, 0, 1000}];
s[n_] := Table[b[n], {k, 1, 2 n - 1}];
h[1] = {1}; h[n_] := Join[h[n - 1], s[n]];
g = h[100]; r[0] = {0}; r[1] = {1}; r[2] = {4, -2};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]];
Table[r[n], {n, 0, 120}] (* A256789 *)
u = Flatten[Table[Last[r[n]], {n, 1, 1000}]]; (* A256791 *)
Select[Range[800], u[[#]] > 0 &] (* A256792 *)
Select[Range[800], u[[#]] < 0 &] (* A256793 *)
CROSSREFS
Cf. A256789, A256793 (complement).
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 13 2015
STATUS
approved
Numbers whose minimal alternating squares representation has positive trace.
+10
4
2, 3, 5, 8, 10, 12, 15, 18, 19, 21, 24, 27, 29, 30, 32, 35, 38, 40, 42, 43, 45, 48, 50, 51, 53, 55, 57, 58, 60, 63, 65, 67, 68, 70, 72, 74, 75, 77, 80, 83, 84, 86, 87, 89, 91, 93, 94, 96, 99, 101, 104, 105, 107, 108, 110, 112, 114, 115, 117, 120, 122, 124
OFFSET
1,1
COMMENTS
See A256789 for definitions.
LINKS
EXAMPLE
R(1) = 1; trace = 1, positive.
R(2) = 4 - 2; trace = -2, negative.
R(3) = 4 - 1; trace = -1, negative.
MATHEMATICA
b[n_] := n^2; bb = Table[b[n], {n, 0, 1000}];
s[n_] := Table[b[n], {k, 1, 2 n - 1}];
h[1] = {1}; h[n_] := Join[h[n - 1], s[n]];
g = h[100]; r[0] = {0}; r[1] = {1}; r[2] = {4, -2};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]];
Table[r[n], {n, 0, 120}] (* A256789 *)
u = Flatten[Table[Last[r[n]], {n, 1, 1000}]]; (* A256791 *)
Select[Range[800], u[[#]] > 0 &] (* A256792 *)
Select[Range[800], u[[#]] < 0 &] (* A256793 *)
CROSSREFS
Cf. A256789, A256792 (complement).
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 13 2015
STATUS
approved
First differences of A256792.
+10
2
3, 2, 1, 2, 2, 2, 1, 2, 1, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 2, 3, 2, 1, 2, 3, 2, 2, 3, 2, 1, 2, 2, 3, 2, 2, 3, 2, 1, 2, 1, 3, 3, 2, 2, 3, 2, 1, 2, 2, 1, 3, 3, 2, 2, 3, 2, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 2, 1, 2, 1, 3, 2, 1, 3, 3, 2, 2, 3, 2, 1, 2, 3, 3, 2
OFFSET
1,1
EXAMPLE
R(0) = 0;
R(1) = 1;
R(2) = 4 - 2;
R(3) = 4 - 1;
R(4) = 4;
R(5) = 9 - 4.
MATHEMATICA
b[n_] := n^2; bb = Table[b[n], {n, 0, 1000}]; (* Squares as base *)
s[n_] := Table[b[n], {k, 1, 2 n - 1}];
h[1] = {1}; h[n_] := Join[h[n - 1], s[n]];
g = h[100]; r[0] = {0}; r[1] = {1}; r[2] = {4, -2};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]];
Table[r[n], {n, 0, 120}]; (* A256789 *)
u = Flatten[Table[Last[r[n]], {n, 1, 1000}]]; (* A256791 *)
u1 = Select[Range[800], u[[#]] > 0 &]; (* A256792 *)
u2 = Select[Range[800], u[[#]] < 0 &]; (* A256793 *)
Differences[u1] (* A256794 *)
Differences[u2] (* A256795 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 13 2015
STATUS
approved
Difference sequence of A256793.
+10
2
1, 2, 3, 2, 2, 3, 3, 1, 2, 3, 3, 2, 1, 2, 3, 3, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 1, 2, 3, 2, 2, 1, 2, 2, 2, 1, 2, 3, 3, 1, 2, 1, 2, 2, 2, 1, 2, 3, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 3, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 3, 3, 1, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 3, 2, 1
OFFSET
1,2
COMMENTS
These are the numbers of consecutive positive traces when the minimal alternating squares representations for positive integers are written in order. Is every term < 5? The first term greater than 3 is a(116) = 4, corresponding to these 3 consecutive representations:
R(225) = 225;
R(226) = 256 - 36 + 9 - 4 + 1;
R(227) = 256 - 36 + 9 - 4 + 2.
(See A256789 for definitions.)
MATHEMATICA
b[n_] := n^2; bb = Table[b[n], {n, 0, 1000}]; (* Squares as base *)
s[n_] := Table[b[n], {k, 1, 2 n - 1}];
h[1] = {1}; h[n_] := Join[h[n - 1], s[n]];
g = h[100]; r[0] = {0}; r[1] = {1}; r[2] = {4, -2};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]];
Table[r[n], {n, 0, 120}]; (* A256789 *)
u = Flatten[Table[Last[r[n]], {n, 1, 1000}]]; (* A256791 *)
u1 = Select[Range[800], u[[#]] > 0 &]; (* A256792 *)
u2 = Select[Range[800], u[[#]] < 0 &]; (* A256793 *)
Differences[u1] (* A256794 *)
Differences[u2] (* A256795 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 13 2015
STATUS
approved
Positive part of the minimal alternating squares representation of n.
+10
2
1, 4, 4, 4, 9, 10, 11, 9, 9, 20, 20, 16, 17, 18, 16, 16, 26, 29, 29, 29, 25, 26, 27, 25, 25, 46, 36, 37, 40, 40, 40, 36, 37, 38, 36, 36, 53, 58, 59, 49, 50, 53, 53, 53, 49, 50, 51, 49, 49, 68, 68, 68, 73, 74, 64, 65, 68, 68, 68, 64, 65, 66, 64, 64, 81, 82
OFFSET
1,2
COMMENTS
See A256789 for definitions.
LINKS
EXAMPLE
R(1) = 1, positive part 1, nonpositive part 0;
R(2) = 4 - 2, positive part 4, nonpositive part 2;
R(3) = 4 - 1, positive part 4, nonpositive part 1;
R(89) = 100 - 16 + 9 - 4, positive part 100 + 9 = 109, nonpositive part 16 + 4 = 20.
MATHEMATICA
b[n_] := n^2; bb = Table[b[n], {n, 0, 100}];
s[n_] := Table[b[n], {k, 1, 2 n - 1}];
h[1] = {1}; h[n_] := Join[h[n - 1], s[n]];
g = h[100]; r[0] = {0}; r[1] = {1}; r[2] = {4, -2};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]];
t = Table[r[n], {n, 1, z}] (* A256789 *)
Table[Total[(Abs[r[n]] + r[n])/2], {n, 1, 120}] (* A256796 *)
Table[Total[(Abs[r[n]] - r[n])/2], {n, 1, 120}] (* A256797 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 13 2015
STATUS
approved
Nonpositive part of the minimal alternating squares representation of n.
+10
2
0, 2, 1, 0, 4, 4, 4, 1, 0, 10, 9, 4, 4, 4, 1, 0, 9, 11, 10, 9, 4, 4, 4, 1, 0, 20, 9, 9, 11, 10, 9, 4, 4, 4, 1, 0, 16, 20, 20, 9, 9, 11, 10, 9, 4, 4, 4, 1, 0, 18, 17, 16, 20, 20, 9, 9, 11, 10, 9, 4, 4, 4, 1, 0, 16, 16, 18, 17, 16, 20, 20, 9, 9, 11, 10, 9, 4
OFFSET
1,2
COMMENTS
See A256789 for definitions.
LINKS
EXAMPLE
R(1) = 1, positive part 1, nonpositive part 0;
R(2) = 4 - 2, positive part 4, nonpositive part 2;
R(3) = 4 - 1, positive part 4, nonpositive part 1;
R(89) = 100 - 16 + 9 - 4, positive part 100 + 9 = 109, nonpositive part 16 + 4 = 20.
MATHEMATICA
b[n_] := n^2; bb = Table[b[n], {n, 0, 100}];
s[n_] := Table[b[n], {k, 1, 2 n - 1}];
h[1] = {1}; h[n_] := Join[h[n - 1], s[n]];
g = h[100]; r[0] = {0}; r[1] = {1}; r[2] = {4, -2};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]];
t = Table[r[n], {n, 1, z}] (* A256789 *)
Table[Total[(Abs[r[n]] + r[n])/2], {n, 1, 120}] (* A256796 *)
Table[Total[(Abs[r[n]] - r[n])/2], {n, 1, 120}] (* A256797 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 13 2015
STATUS
approved

Search completed in 0.008 seconds