[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256696
R(k), the minimal alternating binary representation of k, concatenated for k = 0, 1, 2,....
7
0, 1, 2, 4, -1, 4, 8, -4, 1, 8, -2, 8, -1, 8, 16, -8, 1, 16, -8, 2, 16, -8, 4, -1, 16, -4, 16, -4, 1, 16, -2, 16, -1, 16, 32, -16, 1, 32, -16, 2, 32, -16, 4, -1, 32, -16, 4, 32, -16, 8, -4, 1, 32, -16, 8, -2, 32, -16, 8, -1, 32, -8, 32, -8, 1, 32, -8, 2, 32
OFFSET
0,3
COMMENTS
Suppose that b = (b(0), b(1), ... ) is an increasing sequence of positive integers satisfying b(0) = 1 and b(n+1) <= 2*b(n) for n >= 0. Let B(n) be the least b(m) >= n. Let R(0) = 1, and for n > 0, let R(n) = B(n) - R(B(n) - n). The resulting sum of the form R(n) = B(n) - B(m(1)) + B(m(2)) - ... + ((-1)^k)*B(k) is the minimal alternating b-representation of n. The sum B(n) + B(m(2)) + ... is the positive part of R(n), and the sum B(m(1)) + B(m(3)) + ... , the nonpositive part of R(n). The number ((-1)^k)*B(k) is the trace of n.
If b(n) = 2^n, the sum R(n) is the minimal alternating binary representation of n.
A055975 = trace of n, for n >= 1.
A091072 gives the numbers having positive trace.
A091067 gives the numbers having negative trace.
A072339 = number of terms in R(n).
A073122 = sum of absolute values of the terms in R(n).
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1981, Vol. 2 (2nd ed.), p. 196, Exercise 27.
LINKS
EXAMPLE
R(0) = 0
R(1) = 1
R(2) = 2
R(3) = 4 - 1
R(4) = 4
R(9) = 8 - 4 + 1
R(11) = 16 - 8 + 4 - 1
MATHEMATICA
z = 100; b[n_] := 2^n; bb = Table[b[n], {n, 0, 40}];
s[n_] := Table[b[n + 1], {k, 1, b[n]}];
h[0] = {1}; h[n_] := Join[h[n - 1], s[n - 1]];
g = h[10]; r[0] = {0};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]]
u = Flatten[Table[r[n], {n, 0, z}]]
CROSSREFS
Sequence in context: A377126 A201774 A011029 * A244261 A361873 A085111
KEYWORD
easy,sign,base
AUTHOR
Clark Kimberling, Apr 09 2015
STATUS
approved