[go: up one dir, main page]

login
Search: a254126 -id:a254126
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number A(n,k) of tilings of a k X n rectangle using polyominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
10
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 7, 4, 1, 1, 8, 29, 29, 8, 1, 1, 16, 124, 257, 124, 16, 1, 1, 32, 533, 2408, 2408, 533, 32, 1, 1, 64, 2293, 22873, 50128, 22873, 2293, 64, 1, 1, 128, 9866, 217969, 1064576, 1064576, 217969, 9866, 128, 1, 1, 256, 42451, 2078716, 22734496, 50796983, 22734496, 2078716, 42451, 256, 1
OFFSET
0,8
COMMENTS
A polyomino of shape I is a rectangle of width 1.
All columns (or rows) are linear recurrences with constant coefficients. An upper bound on the order of the recurrence is A005683(k+2). This upper bound is exact for at least 1 <= k <= 10. - Andrew Howroyd, Dec 23 2019
LINKS
Wikipedia, Polyomino
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 4, 8, 16, 32, ...
1, 2, 7, 29, 124, 533, 2293, ...
1, 4, 29, 257, 2408, 22873, 217969, ...
1, 8, 124, 2408, 50128, 1064576, 22734496, ...
1, 16, 533, 22873, 1064576, 50796983, 2441987149, ...
1, 32, 2293, 217969, 22734496, 2441987149, 264719566561, ...
PROG
(PARI)
step(v, S)={vector(#v, i, sum(j=1, #v, v[j]*2^hammingweight(bitand(S[i], S[j]))))}
mkS(k)={apply(b->bitand(b, 2*b+1), [2^(k-1)..2^k-1])}
T(n, k)={if(k<2, if(k==0||n==0, 1, 2^(n-1)), my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v, S)); vecsum(v))} \\ Andrew Howroyd, Dec 23 2019
CROSSREFS
Columns (or rows) k=0-7 give: A000012, A011782, A052961, A254124, A254125, A254126, A254458, A254607.
Main diagonal gives: A254127.
Cf. A005683.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jan 30 2015
STATUS
approved
The number of tilings of a 3 X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1.
+10
8
1, 4, 29, 257, 2408, 22873, 217969, 2078716, 19827701, 189133073, 1804125632, 17209452337, 164160078241, 1565914710964, 14937181915469, 142485030313697, 1359157571347928, 12964936038223753, 123671875897903249, 1179699833714208556, 11253097663211943461
OFFSET
0,2
COMMENTS
Let G_n be the graph with vertices {(a,b) : 1<=a<=5, 1<=b<=2n-1, a+b odd} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1. Then a(n) is the number of independent sets in G_n.
FORMULA
G.f.: (1 - 8*x + 5*x^2)/(1 - 12*x + 24*x^2 - 5*x^3).
a(n) = 12*a(n-1) - 24*a(n-2) + 5*a(n-3) for n > 2. - Colin Barker, Jun 07 2020
PROG
(PARI) Vec((1-8*x+5*x^2)/(1-12*x+24*x^2-5*x^3) + O(x^30)) \\ Michel Marcus, Jan 26 2015
CROSSREFS
Column k=3 of A254414.
KEYWORD
nonn,easy
AUTHOR
Steve Butler, Jan 25 2015
STATUS
approved
The number of tilings of a 4 X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are 1 X 1, 1 X 2, ..., 1 X n, 2 X 1, 3 X 1, 4 X 1.
+10
8
1, 8, 124, 2408, 50128, 1064576, 22734496, 486248000, 10404289216, 222647030144, 4764694602112, 101966374503680, 2182126445631232, 46698521255409152, 999370260391863808, 21386993399983588352, 457691719382960757760, 9794818132582234683392
OFFSET
0,2
COMMENTS
Let G_n be the graph with vertices {(a,b) : 1<=a<=7, 1<=b<=2n-1, a+b odd} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1. Then a(n) is the number of independent sets in G_n.
LINKS
Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
FORMULA
G.f.: (1 - 22x + 86x^2 - 92x^3 + 16x^4)/(1 - 30x + 202x^2 - 396x^3 + 248x^4 - 32x^5).
a(n) = 30*a(n-1) - 202*a(n-2) + 396*a(n-3) - 248*a(n-4) + 32*a(n-5) for n>4. - Colin Barker, Jun 07 2020
PROG
(PARI) Vec((1-22*x+86*x^2-92*x^3+16*x^4)/(1-30*x+202*x^2-396*x^3 +248*x^4-32*x^5) + O(x^30)) \\ Michel Marcus, Jan 26 2015
CROSSREFS
Column k=4 of A254414.
KEYWORD
nonn,easy
AUTHOR
Steve Butler, Jan 25 2015
STATUS
approved
The number of tilings of an n X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are of size (1 X i) or (i X 1) with 1<=i<=n.
+10
5
1, 1, 7, 257, 50128, 50796983, 264719566561, 7063448084710944, 963204439792722969647, 670733745303300958404439297, 2384351527902618144856749327661056, 43263422878945294225852497665519673400479, 4006622856873663241294794301627790673728956619649
OFFSET
0,3
COMMENTS
Let R(n) be the set of squares that have vertices at integer coordinates and lie in the region of the plane |x|+|y|<=n+1, and let two squares be independent if they do not share a common edge. Then a(n) is the number of ways to pick a set of independent cell(s) in R(n). (Note R(n) is also known as the Aztec diamond.)
LINKS
Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
EXAMPLE
a(2)=7 for the following 7 tilings:
_ _ _ _ _ _ _ _ _ _ _ _ _ _
|_|_| |_ _| |_|_| | |_| |_| | |_ _| | | |
|_|_| |_|_| |_ _| |_|_| |_|_| |_ _| |_|_|
PROG
(SageMath)
def matrix_entry(L1, L2, n):
tally=0
for i in range(n-1):
if (not i in L1) and (not i in L2) and (not i+1 in L1) and (not i+1 in L2):
tally+=1
return 2^tally
def a(n):
index_set={}
counter=0
for C in Combinations(n):
index_set[counter]=C
counter+=1
current_v=[0]*counter
current_v[0]=1
for t in range(n):
new_v=[0]*counter
for i in range(counter):
for j in range(counter):
new_v[i]+=current_v[j]*matrix_entry(index_set[I], index_set[j], n)
current_v=new_v
return current_v[0]
for n in range(0, 10):
print(a(n), end=', ')
CROSSREFS
Main diagonal of A254414.
KEYWORD
nonn
AUTHOR
Steve Butler, Jan 25 2015
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jan 30 2015
STATUS
approved
Number of independent sets in the generalized Aztec diamond E(L_5,L_{2n-1}).
+10
4
1, 8, 73, 689, 6556, 62501, 596113, 5686112, 54239137, 517383521, 4935293524, 47077513469, 449070034657, 4283656560248, 40861585458553, 389776618229969, 3718059650555596, 35466384896440661, 338312070235103473, 3227141903559443792, 30783545081553045457
OFFSET
0,2
COMMENTS
E(L_5,L_{2n-1}) is the graph with vertices {(a,b) : 1<=a<=5, 1<=b<=2n-1, a+b even} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1.
LINKS
Eric Weisstein's World of Mathematics, Independent Vertex Set
Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
FORMULA
Empirical g.f.: -(x^2-4*x+1) / (5*x^3-24*x^2+12*x-1). - Colin Barker, Jan 26 2015
The above g.f. is correct. See A331406 for bounds on the order of the recurrence. - Andrew Howroyd, Jan 16 2020
PROG
(PARI) Vec((1 - 4*x + x^2)/(1 - 12*x + 24*x^2 - 5*x^3) + O(x^25)) \\ Andrew Howroyd, Jan 16 2020
CROSSREFS
Row n=3 of A331406.
KEYWORD
nonn,easy
AUTHOR
Steve Butler, Jan 26 2015
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Jan 15 2020
STATUS
approved
Number of independent sets in the generalized Aztec diamond E(L_7,L_{2n-1}).
+10
4
1, 16, 314, 6556, 139344, 2976416, 63663808, 1362242592, 29151501760, 623849225024, 13350628082560, 285709494797952, 6114316283697408, 130849237522680064, 2800235203724240384, 59926350645878761984, 1282452098548524184576, 27445078313878468469760
OFFSET
0,2
COMMENTS
E(L_7,L_{2n-1}) is the graph with vertices {(a,b) : 1<=a<=7, 1<=b<=2n-1, a+b even} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1.
LINKS
Eric Weisstein's World of Mathematics, Independent Vertex Set
Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
FORMULA
Empirical g.f.: -(4*x^4-28*x^3+36*x^2-14*x+1) / (32*x^5-248*x^4+396*x^3-202*x^2+30*x-1). - Colin Barker, Jan 26 2015
The above g.f. is correct. See A331406 for bounds on the order of the recurrence. - Andrew Howroyd, Jan 16 2020
MATHEMATICA
LinearRecurrence[{30, -202, 396, -248, 32}, {1, 16, 314, 6556, 139344}, 20] (* Harvey P. Dale, May 31 2024 *)
PROG
(PARI) Vec((1 - 14*x + 36*x^2 - 28*x^3 + 4*x^4)/(1 - 30*x + 202*x^2 - 396*x^3 + 248*x^4 - 32*x^5) + O(x^20)) \\ Andrew Howroyd, Jan 16 2020
CROSSREFS
Row n=4 of A331406.
KEYWORD
nonn
AUTHOR
Steve Butler, Jan 26 2015
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Jan 15 2020
STATUS
approved
Number of independent sets in the generalized Aztec diamond E(L_9,L_{2n-1}).
+10
4
1, 32, 1351, 62501, 2976416, 142999897, 6888568813, 332097693792, 16014193762579, 772279980131297, 37243762479698928, 1796118644459454733, 86619824190256627593, 4177339899819872607008, 201457018240598757372431, 9715496740529686006497709, 468541027322402116068858304
OFFSET
0,2
COMMENTS
E(L_9,L_{2n-1}) is the graph with vertices {(a,b) : 1<=a<=9, 1<=b<=2n-1, a+b even} and edges between (a,b) and (c,d) if and only if |a-b|=|c-d|=1.
LINKS
Eric Weisstein's World of Mathematics, Independent Vertex Set
Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636.
Index entries for linear recurrences with constant coefficients, signature (74,-1450,10672,-34214,50814,-34671,9772,-936).
FORMULA
G.f.: (1 - 42*x + 433*x^2 - 1745*x^3 + 3002*x^4 - 2275*x^5 + 700*x^6 - 72*x^7)/(1 - 74*x + 1450*x^2 - 10672*x^3 + 34214*x^4 - 50814*x^5 + 34671*x^6 - 9772*x^7 + 936*x^8). - Andrew Howroyd, Jan 16 2020
PROG
(PARI) Vec((1 - 42*x + 433*x^2 - 1745*x^3 + 3002*x^4 - 2275*x^5 + 700*x^6 - 72*x^7)/(1 - 74*x + 1450*x^2 - 10672*x^3 + 34214*x^4 - 50814*x^5 + 34671*x^6 - 9772*x^7 + 936*x^8) + O(x^20)) \\ Andrew Howroyd, Jan 16 2020
CROSSREFS
Row n=5 of A331406.
KEYWORD
nonn
AUTHOR
Steve Butler, Jan 26 2015
EXTENSIONS
a(10)-a(11) corrected and a(12) and beyond from Andrew Howroyd, Jan 15 2020
STATUS
approved

Search completed in 0.007 seconds