# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a254127 Showing 1-1 of 1 %I A254127 #28 May 31 2024 14:42:54 %S A254127 1,1,7,257,50128,50796983,264719566561,7063448084710944, %T A254127 963204439792722969647,670733745303300958404439297, %U A254127 2384351527902618144856749327661056,43263422878945294225852497665519673400479,4006622856873663241294794301627790673728956619649 %N A254127 The number of tilings of an n X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are of size (1 X i) or (i X 1) with 1<=i<=n. %C A254127 Let R(n) be the set of squares that have vertices at integer coordinates and lie in the region of the plane |x|+|y|<=n+1, and let two squares be independent if they do not share a common edge. Then a(n) is the number of ways to pick a set of independent cell(s) in R(n). (Note R(n) is also known as the Aztec diamond.) %H A254127 Steve Butler, Table of n, a(n) for n = 0..15 %H A254127 Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636. %e A254127 a(2)=7 for the following 7 tilings: %e A254127 _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A254127 |_|_| |_ _| |_|_| | |_| |_| | |_ _| | | | %e A254127 |_|_| |_|_| |_ _| |_|_| |_|_| |_ _| |_|_| %o A254127 (SageMath) %o A254127 def matrix_entry(L1, L2, n): %o A254127 tally=0 %o A254127 for i in range(n-1): %o A254127 if (not i in L1) and (not i in L2) and (not i+1 in L1) and (not i+1 in L2): %o A254127 tally+=1 %o A254127 return 2^tally %o A254127 def a(n): %o A254127 index_set={} %o A254127 counter=0 %o A254127 for C in Combinations(n): %o A254127 index_set[counter]=C %o A254127 counter+=1 %o A254127 current_v=[0]*counter %o A254127 current_v[0]=1 %o A254127 for t in range(n): %o A254127 new_v=[0]*counter %o A254127 for i in range(counter): %o A254127 for j in range(counter): %o A254127 new_v[i]+=current_v[j]*matrix_entry(index_set[I], index_set[j], n) %o A254127 current_v=new_v %o A254127 return current_v[0] %o A254127 for n in range(0, 10): %o A254127 print(a(n), end=', ') %Y A254127 Cf. A052961, A254124, A254125, A254126. %Y A254127 Main diagonal of A254414. %K A254127 nonn %O A254127 0,3 %A A254127 _Steve Butler_, Jan 25 2015 %E A254127 a(0)=1 prepended by _Alois P. Heinz_, Jan 30 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE