[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a218509 -id:a218509
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n in which any two parts differ by at most k.
+10
17
1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 2, 5, 6, 7, 7, 7, 4, 6, 9, 10, 11, 11, 11, 2, 7, 10, 13, 14, 15, 15, 15, 4, 8, 14, 17, 20, 21, 22, 22, 22, 3, 9, 15, 22, 25, 28, 29, 30, 30, 30, 4, 10, 20, 27, 34, 37, 40, 41, 42, 42, 42, 2, 11, 21, 33, 41, 48, 51, 54, 55, 56, 56, 56
OFFSET
0,4
COMMENTS
T(n,k) = A000041(n) for n >= 0 and k >= n.
LINKS
FORMULA
G.f. of column k: 1 + Sum_{j>0} x^j / Product_{i=0..k} (1-x^(i+j)).
EXAMPLE
T(6,0) = 4: [6], [3,3], [2,2,2], [1,1,1,1,1,1].
T(6,1) = 6: [6], [3,3], [2,1,1,1,1], [2,2,1,1], [2,2,2], [1,1,1,1,1,1].
T(6,2) = 9: [6], [4,2], [3,1,1,1], [3,2,1], [3,3], [2,1,1,1,1], [2,2,1,1], [2,2,2], [1,1,1,1,1,1].
Triangle begins:
1;
1, 1;
2, 2, 2;
2, 3, 3, 3;
3, 4, 5, 5, 5;
2, 5, 6, 7, 7, 7;
4, 6, 9, 10, 11, 11, 11;
2, 7, 10, 13, 14, 15, 15, 15;
MAPLE
b:= proc(n, i, k) option remember;
if n<0 or k<0 then 0
elif n=0 then 1
elif i<1 then 0
else b(n, i-1, k-1) +b(n-i, i, k)
fi
end:
T:= (n, k)-> `if`(n=0, 1, 0) +add(b(n-i, i, k), i=1..n):
seq(seq(T(n, k), k=0..n), n=0..20);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n < 0 || k < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, k-1] + b[n-i, i, k]]]]; t[n_, k_] := If[n == 0, 1, 0] + Sum[b[n-i, i, k], {i, 1, n}]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
CROSSREFS
Columns k=0-10 give (for n>0): A000005, A000027, A117142, A117143, A218506, A218507, A218508, A218509, A218510, A218511, A218512.
Main diagonal gives: A000041.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 30 2011
STATUS
approved
Number of partitions p of n such that max(p)-min(p) = 7.
+10
3
1, 1, 3, 3, 7, 8, 14, 18, 28, 34, 51, 63, 86, 108, 144, 175, 229, 278, 351, 425, 529, 630, 775, 919, 1109, 1309, 1565, 1827, 2167, 2518, 2952, 3414, 3975, 4563, 5281, 6036, 6931, 7889, 9012, 10200, 11598, 13078, 14785, 16613, 18704, 20925, 23470, 26174, 29229
OFFSET
9,3
LINKS
G. E. Andrews, M. Beck and N. Robbins, Partitions with fixed differences between largest and smallest parts, arXiv:1406.3374 [math.NT], 2014.
FORMULA
G.f.: Sum_{k>0} x^(2*k+7)/Product_{j=0..7} (1-x^(k+j)).
a(n) = A097364(n,7) = A116685(n,7) = A194621(n,7) - A194621(n,6) = A218509(n) - A218508(n).
MATHEMATICA
terms = 49; offset = 9; max = terms + offset; s[k0_ /; k0 > 0] := Sum[x^(2*k + k0)/Product[ (1 - x^(k + j)), {j, 0, k0}], {k, 1, Ceiling[max/2]}] + O[x]^max // CoefficientList[#, x] &; Drop[s[7], offset] (* Jean-François Alcover, Sep 11 2017, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 02 2012
STATUS
approved
Number of partitions p of n such that max(p)-min(p) = 8.
+10
3
1, 1, 3, 3, 7, 8, 14, 18, 28, 35, 52, 65, 90, 113, 152, 188, 246, 302, 387, 471, 591, 714, 884, 1059, 1292, 1538, 1857, 2193, 2621, 3077, 3646, 4254, 4999, 5801, 6772, 7815, 9062, 10409, 12002, 13719, 15733, 17909, 20438, 23169, 26318, 29722, 33623, 37833
OFFSET
10,3
LINKS
G. E. Andrews, M. Beck and N. Robbins, Partitions with fixed differences between largest and smallest parts, arXiv:1406.3374 [math.NT], 2014.
FORMULA
G.f.: Sum_{k>0} x^(2*k+8)/Product_{j=0..8} (1-x^(k+j)).
a(n) = A097364(n,8) = A116685(n,8) = A194621(n,8) - A194621(n,7) = A218510(n) - A218509(n).
MATHEMATICA
terms = 48; offset = 10; max = terms + offset; s[k0_ /; k0 > 0] := Sum[x^(2*k + k0)/Product[ (1 - x^(k + j)), {j, 0, k0}], {k, 1, Ceiling[max/2]}] + O[x]^max // CoefficientList[#, x] &; Drop[s[8], offset] (* Jean-François Alcover, Sep 11 2017, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 02 2012
STATUS
approved

Search completed in 0.008 seconds