[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a215884 -id:a215884
     Sort: relevance | references | number | modified | created      Format: long | short | data
Written in base 3, n ends in a(n) consecutive nonzero digits.
+10
7
0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 1, 1, 0, 3, 3, 0, 3, 3, 0, 1, 1, 0, 3, 3, 0, 3, 3, 0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 1, 1, 0, 4, 4, 0, 4, 4, 0, 1, 1, 0, 4, 4, 0, 4, 4, 0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 1, 1, 0, 4, 4, 0, 4, 4, 0, 1, 1, 0, 4, 4, 0, 4, 4, 0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 1, 1, 0, 3, 3, 0, 3, 3, 0, 1, 1, 0, 3, 3, 0, 3
OFFSET
0,5
COMMENTS
Somehow complementary to A007949, the 3-adic valuation of n.
The base 2 analog of this sequence essentially coincides with the 2-adic valuation A007814 (up to a shift in the index).
One gets back the same sequence by concatenation of the pattern (0,1,1) successively multiplied by a(n)+1 = 1, 2, 2, 1, 3, 3, ... for n = 0, 1, 2, 3, 4, 5, .... This is equivalent to the formula (a(n)+1)*(0, 1, 1) = a(3n, 3n+1, 3n+2). - M. F. Hasler, Aug 26 2012, corrected Aug 23 2022
a(A008585(n)) = 0; a(A001651(n)) > 0. - Reinhard Zumkeller, Dec 28 2012
LINKS
FORMULA
a(3^(t+1)*k+m) = t for 3^t > m > 3^(t-1).
a(3n) = 0, a(3n+1) = a(3n+2) = a(n)+1. - M. F. Hasler, Aug 26 2012, corrected thanks to a remark from Jianing Song, Aug 23 2022
EXAMPLE
The numbers 0, 1, 2, 3, 4, 5, 6, 7 are written in base 3 as 0, 1, 2, 10, 11, 12, 20, 21 and thus end in a(0..7) = 0, 1, 1, 0, 2, 2, 0, 2 nonzero digits.
MATHEMATICA
cnzd[n_]:=Module[{idn3=IntegerDigits[n, 3], len}, len=Length[idn3]; Which[ idn3[[len]] == 0, 0, Position[idn3, 0]=={}, len, True, len-Position[idn3, 0] [[-1, 1]]]]; Array[cnzd, 110, 0] (* Harvey P. Dale, Jun 07 2016 *)
PROG
(PARI) A215879(n, b=3)=n=divrem(n, b); for(c=0, oo, n[2]||return(c); n=divrem(n[1], b))
(PARI) a(n)=my(k); while(n%3, n\=3; k++); k \\ Charles R Greathouse IV, Sep 26 2013
(Haskell)
a215879 n = if t == 0 then 0 else a215879 n' + 1
where (n', t) = divMod n 3
-- Reinhard Zumkeller, Dec 28 2012
(Python)
def A215879(n):
c = 0
while (a:=divmod(n, 3))[1]:
c += 1
n = a[0]
return c # Chai Wah Wu, Oct 15 2022
CROSSREFS
The base-4, base-5 and base-10 analogs of this sequence are given in A215883, A215884 and A215887.
Cf. A007089.
KEYWORD
nonn,base,nice
AUTHOR
M. F. Hasler, Aug 25 2012
STATUS
approved
Written in decimal, n ends in a(n) consecutive nonzero digits.
+10
6
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0
OFFSET
0,12
COMMENTS
Sequences A215879, A215883 and A215884 are the base 3, 4 and 5 analogs, while the base 2 analog of this sequence coincides (up to a shift in the index) with the 2-adic valuation A007814, see comments there.
Starting indexing with k=0 for the rightmost digit, a(n) gives the index of the least significant zero in the decimal representation of n. This may also be the index of the leading zero if there are no zeros in the number itself (A052382). - Antti Karttunen, Dec 07 2017
First occurrence of k is A002275(k). - Robert G. Wilson v, Dec 07 2017
LINKS
EXAMPLE
Numbers which are multiples of 10 have no nonzero digit at their (right) end, thus a(10*k) = 0.
If numbers are congruent to 1,...,9 mod 100, then they end in a nonzero digit, but do not have more than 1 concatenated nonzero digits at their right end: Thus, a(100k+m)=1 for 0 < m < 10.
In the same way, a(k*10^(e+1)+m) = e if 10^e > m > 10^(e-1).
MATHEMATICA
Table[Which[Divisible[n, 10], 0, FreeQ[IntegerDigits[n], 0], IntegerLength[ n], True, Position[ Reverse[ IntegerDigits[n]], 0]-1], {n, 0, 110}] // Flatten (* Harvey P. Dale, Sep 05 2017 *)
f[n_] := Block[{c = 0, m = n}, While[Mod[m, 10] > 0, m = Floor[m/10]; c++]; c]; Array[f, 105, 0] (* Robert G. Wilson v, Dec 07 2017 *)
PROG
(PARI) a(n, b=10)= n=divrem(n, b); for(c=0, 9e9, n[2] || return(c); n=divrem(n[1], b))
(PARI) a(n)=my(k); while(n%10, n\=10; k++); k \\ Charles R Greathouse IV, Sep 26 2013
CROSSREFS
Cf. A002275, A052382, A339012 (factorial base).
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Aug 25 2012
EXTENSIONS
More terms from Antti Karttunen, Dec 07 2017
STATUS
approved
When written in base 4, n ends in a(n) consecutive nonzero digits.
+10
3
0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 1, 1, 1, 0, 3, 3, 3, 0, 3, 3, 3, 0, 3, 3, 3, 0, 1, 1, 1, 0, 3, 3, 3, 0, 3, 3, 3, 0, 3, 3, 3, 0, 1, 1, 1, 0, 3, 3, 3, 0, 3, 3, 3, 0, 3, 3, 3, 0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 1, 1, 1, 0, 4, 4
OFFSET
0,6
COMMENTS
Sequences A215879, A215884 and A215887 are the base 3, 5 and 10 analog, while the base 2 analog of this sequence coincides (up to a shift in the index) with the 2-adic valuation A007814, see comments there.
FORMULA
a(4^(t+1)*k+m) = t for 4^t > m > 4^(t-1).
EXAMPLE
The numbers 0,1,2,3,4,5,6,7 are written in base 4 as 0,1,2,3,10,11,12,13 and thus end in a(0..7)=0,1,1,1,0,2,2,2 nonzero digits.
PROG
(PARI) a(n, b=4)=n=divrem(n, b); for(c=0, 9e9, n[2]||return(c); n=divrem(n[1], b))
(PARI) a(n)=my(k); while(n%4, n>>=2; k++); k \\ Charles R Greathouse IV, Sep 26 2013
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Aug 25 2012
STATUS
approved

Search completed in 0.009 seconds