[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215884
Written in base 5, n ends in a(n) consecutive nonzero digits.
4
0, 1, 1, 1, 1, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 3, 3, 3, 3, 0, 3, 3, 3, 3, 0, 3, 3, 3, 3, 0, 3, 3, 3, 3, 0, 1, 1, 1, 1, 0, 3, 3, 3, 3, 0, 3, 3, 3, 3, 0, 3, 3, 3, 3, 0, 3, 3, 3, 3, 0, 1, 1, 1, 1, 0, 3, 3, 3, 3, 0, 3, 3, 3, 3, 0, 3, 3, 3, 3, 0, 3, 3, 3, 3, 0, 1, 1, 1, 1, 0, 3
OFFSET
0,7
COMMENTS
Sequences A215879, A215883 and A215887 are the base 3, 4 and 10 analogs, while the base 2 analog of this sequence coincides (up to a shift in the index) with the 2-adic valuation A007814, cf. comments there.
LINKS
EXAMPLE
The numbers 24,...,31 are written in base 5 as 44,100,101,102,103,104,110,111 and thus end in a string of a(24..31)=2,0,1,1,1,1,0,3 nonzero digits.
MATHEMATICA
cnzd[n_]:=Module[{c=Split[If[#>0, 1, 0]&/@IntegerDigits[n, 5]]}, If[FreeQ[ c[[-1]], 0], Total[c[[-1]]], 0]]; Array[cnzd, 120, 0] (* Harvey P. Dale, Jan 03 2023 *)
PROG
(PARI) a(n, b=5)=n=divrem(n, b); for(c=0, 9e9, n[2]||return(c); n=divrem(n[1], b))
(PARI) a(n)=my(k); while(n%5, n\=5; k++); k \\ Charles R Greathouse IV, Sep 26 2013
CROSSREFS
Sequence in context: A053398 A065833 A245476 * A305029 A097033 A268686
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Aug 25 2012
STATUS
approved