[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a215610 -id:a215610
     Sort: relevance | references | number | modified | created      Format: long | short | data
Integers k such that 2^(k-1) == 1 (mod k).
+10
13
1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331
OFFSET
1,2
COMMENTS
Old definition was: Odd integers n such that 2^(n-1) == 4^(n-1) == 8^(n-1) == ... == k^(n-1) (mod n), where k = A062383(n). Dividing 2^(n-1) == 4^(n-1) (mod n) by 2^(n-1), we get 1 == 2^(n-1) (mod n), implying the current definition. - Max Alekseyev, Sep 22 2016
The union of {1}, the odd primes, and the Fermat pseudoprimes, i.e., {1} U A065091 U A001567. Also, the union of A006005 and A001567 (conjectured by Alois P. Heinz, Dec 10 2010). - Max Alekseyev, Sep 22 2016
These numbers were called "fermatians" by Shanks (1962). - Amiram Eldar, Apr 21 2024
REFERENCES
Daniel Shanks, Solved and Unsolved Problems in Number Theory, Spartan Books, Washington D.C., 1962.
LINKS
EXAMPLE
5 is in the sequence because 2^(5-1) == 4^(5-1) == 8^(5-1) == 1 (mod 5).
MATHEMATICA
m = 1; Join[Select[Range[m], Divisible[2^(# - 1) - m, #] &],
Select[Range[m + 1, 10^3], PowerMod[2, # - 1, #] == m &]] (* Robert Price, Oct 12 2018 *)
PROG
(PARI) isok(n) = Mod(2, n)^(n-1) == 1; \\ Michel Marcus, Sep 23 2016
(Python)
from itertools import count, islice
def A176997_gen(startvalue=1): # generator of terms >= startvalue
if startvalue <= 1:
yield 1
k = 1<<(s:=max(startvalue, 1))-1
for n in count(s):
if k % n == 1:
yield n
k <<= 1
A176997_list = list(islice(A176997_gen(), 30)) # Chai Wah Wu, Jun 30 2022
CROSSREFS
The odd terms of A015919.
Odd integers n such that 2^n == 2^k (mod n): this sequence (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), A276968 (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), A276970 (k=9), A215612 (k=10), A276971 (k=11), A215613 (k=12).
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Max Alekseyev, Sep 22 2016
STATUS
approved
Odd integers n such that 2^n == 2^8 (mod n).
+10
11
1, 127, 3473, 19313, 30353, 226703, 230777, 345023, 929783, 1790159, 1878073, 2569337, 3441743, 4213511, 8026103, 9770153, 19139183, 24261623, 30652223, 35482433, 38044223, 40642103, 55015793, 65046479, 67411121, 69601193, 119611073
OFFSET
1,2
COMMENTS
Also, the odd solutions to 2^(n-8) == 1 (mod n). The only even solution is n=8.
For all m, 2^A051447(m)-1 belongs to this sequence.
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..859 (all terms below 10^14)
MATHEMATICA
m = 2^8; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &],
Select[Range[m + 1, 10^6, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
CROSSREFS
The odd terms of A015929.
KEYWORD
nonn
AUTHOR
Max Alekseyev, Aug 17 2012
STATUS
approved
Odd integers n such that 2^n == 2^10 (mod n).
+10
11
1, 7, 73, 9271, 3195367, 6769801, 15413863, 24540337, 47424961, 52268743, 146583343, 384586849, 469501471, 475882081, 859764727, 1097475991, 1169323417, 1400034919, 2518532047, 2870143993, 3258854623, 5609707729, 6022970047, 6420870271, 9011348521
OFFSET
1,2
COMMENTS
Also, the odd solutions to 2^(n-10) == 1 (mod n). The only even solution is n=10.
For all m, 2^A033982(m)-1 belongs to this sequence.
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..209 (all terms below 10^14)
MATHEMATICA
m = 2^10; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^7, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 15 2018 *)
CROSSREFS
The odd terms of A015932.
KEYWORD
nonn
AUTHOR
Max Alekseyev, Aug 17 2012
STATUS
approved
Odd integers n such that 2^n == 2^12 (mod n).
+10
11
1, 23, 89, 2047, 5969, 1803407, 6531977, 6667079, 7694041, 16252897, 146825647, 284464633, 315096487, 351745417, 413414167, 512694047, 615366953, 2723423687, 3104303327, 3969298807, 5754671737, 7242954137, 8766711119, 14046374879
OFFSET
1,2
COMMENTS
Also, the odd solutions to 2^(n-12) == 1 (mod n). The only even solution is n=12.
For all m, 2^A051446(m)-1 belongs to this sequence.
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..93 (all terms below 10^14)
MATHEMATICA
m = 2^12; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^7, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 15 2018 *)
CROSSREFS
The odd terms of A015937.
KEYWORD
nonn
AUTHOR
Max Alekseyev, Aug 17 2012
STATUS
approved
Positive integers n such that 2^n == 2^6 (mod n).
+10
9
1, 2, 4, 6, 8, 10, 12, 16, 18, 24, 30, 31, 32, 36, 42, 48, 64, 66, 72, 78, 84, 90, 96, 102, 114, 126, 138, 144, 168, 174, 176, 186, 192, 210, 222, 234, 246, 252, 258, 282, 288, 318, 336, 354, 366, 390, 396, 402, 426, 438, 456, 474, 496, 498, 504, 510, 534, 546
OFFSET
1,2
COMMENTS
The odd terms are given by A215610.
For all m, 2^A033981(m)-1 belongs to this sequence.
LINKS
MATHEMATICA
Select[Range[1000], Mod[2^# - 2^6, #] == 0 &] (* T. D. Noe, Aug 17 2012 *)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Edited by Max Alekseyev, Jul 30 2011
STATUS
approved
Odd integers n such that 2^n == 2^3 (mod n).
+10
8
1, 3, 9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 195, 201, 213, 219, 237, 249, 267, 291, 303, 309, 315, 321, 327, 339, 381, 393, 399, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 693, 699, 717, 723, 731, 753, 771, 789, 807
OFFSET
1,2
COMMENTS
Also, integers n such that 2^(n - 3) == 1 (mod n).
Contains A033553 as a subsequence. Smallest term greater than 3 missing in A033553 is 731.
For all m, 2^A015921(m) - 1 belongs to this sequence.
LINKS
MATHEMATICA
Join[{1}, Select[Range[1, 1023, 2], PowerMod[2, # - 3, #] == 1 &]] (* Alonso del Arte, Sep 22 2016 *)
PROG
(PARI) isok(n) = (n % 2) && (Mod(2, n)^n==8); \\ Michel Marcus, Sep 23 2016
CROSSREFS
The odd terms of A015922.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k = 1), A173572 (k = 2), this sequence (k = 3), A033984 (k = 4), A276968 (k = 5), A215610 (k = 6), A276969 (k = 7), A215611 (k = 8), A276970 (k = 9), A215612 (k = 10), A276971 (k = 11), A215613 (k = 12).
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Sep 22 2016
STATUS
approved
Odd integers n such that 2^n == 2^5 (mod n).
+10
7
1, 3, 5, 25, 65, 85, 145, 165, 185, 205, 221, 265, 305, 365, 445, 465, 485, 505, 545, 565, 685, 745, 785, 825, 865, 905, 965, 985, 1025, 1085, 1145, 1165, 1205, 1285, 1345, 1385, 1405, 1465, 1565, 1585, 1685, 1705, 1745, 1765, 1865, 1925, 1945, 1985, 2005, 2045, 2105, 2165, 2245, 2285, 2305, 2325
OFFSET
1,2
COMMENTS
Also, integers n such that 2^(n-5) == 1 (mod n).
Contains A050993 as a subsequence.
For all m, 2^A128122(m)-1 belongs to this sequence.
LINKS
MATHEMATICA
m = 2^5; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &],
Select[Range[m + 1, 10^3, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
CROSSREFS
The odd terms of A015925.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), this sequence (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), A276970 (k=9), A215612 (k=10), A276971 (k=11), A215613 (k=12).
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Sep 22 2016
STATUS
approved
Odd integers n such that 2^n == 2^7 (mod n).
+10
7
1, 3, 7, 15, 49, 91, 133, 217, 255, 259, 301, 427, 469, 511, 527, 553, 679, 721, 763, 889, 973, 1015, 1057, 1099, 1141, 1267, 1351, 1393, 1477, 1561, 1603, 1687, 1897, 1939, 1981, 2107, 2149, 2191, 2317, 2359, 2443, 2569, 2611, 2653, 2779, 2863, 2947, 3031, 3073, 3199, 3241, 3409, 3493, 3661, 3787
OFFSET
1,2
COMMENTS
Also, integers n such that 2^(n-7) == 1 (mod n).
Contains A208155 as a subsequence.
For all m, 2^A015922(m)-1 belongs to this sequence.
LINKS
MATHEMATICA
m = 2^7; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &],
Select[Range[m + 1, 10^3, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
PROG
(PARI) is(n)=n%2 && Mod(2, n)^n==128 \\ Charles R Greathouse IV, Sep 22 2016
CROSSREFS
The odd terms of A015927.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), A276968 (k=5), A215610 (k=6), this sequence (k=7), A215611 (k=8), A276970 (k=9), A215612 (k=10), A276971 (k=11), A215613 (k=12).
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Sep 22 2016
STATUS
approved
Odd integers n such that 2^n == 2^9 (mod n).
+10
7
1, 3, 5, 9, 17, 21, 27, 45, 63, 99, 105, 117, 153, 171, 189, 207, 261, 273, 279, 333, 369, 387, 423, 429, 477, 513, 531, 549, 585, 603, 639, 657, 711, 747, 801, 873, 909, 927, 945, 963, 981, 1017, 1143, 1179, 1197, 1209, 1233, 1251, 1341, 1359, 1365, 1413, 1467, 1503, 1557, 1611, 1629, 1665, 1719, 1737
OFFSET
1,2
COMMENTS
Also, integers n such that 2^(n-9) == 1 (mod n).
Contains A208157 as a subsequence.
For all m, 2^A128123(m)-1 belongs to this sequence.
LINKS
MATHEMATICA
m = 2^9; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^3, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 15 2018 *)
CROSSREFS
The odd terms of A015931.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), A276968 (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), this sequence (k=9), A215612 (k=10), A276971 (k=11), A215613 (k=12).
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Sep 22 2016
STATUS
approved
Odd integers n such that 2^n == 2^11 (mod n).
+10
7
1, 3, 11, 15, 31, 35, 51, 121, 341, 451, 455, 671, 781, 1111, 1235, 1271, 1441, 1547, 1661, 1991, 2091, 2101, 2321, 2651, 2761, 2981, 3091, 3421, 3641, 3731, 3751, 4403, 4411, 4631, 4741, 5071, 5401, 5731, 5951, 6171, 6191, 6281, 6611, 6851, 6941, 7051, 7271, 7601, 7711, 8261, 8371, 8435, 8921
OFFSET
1,2
COMMENTS
Also, integers n such that 2^(n-11) == 1 (mod n).
For all m, 2^A128124(m)-1 belongs to this sequence.
LINKS
MATHEMATICA
m = 2^11; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &],
Select[Range[m + 1, 10^6, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
CROSSREFS
The odd terms of A015935.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), A276968 (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), A276970 (k=9), A215612 (k=10), this sequence (k=11), A215613 (k=12).
Cf. A128124.
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Sep 22 2016
STATUS
approved

Search completed in 0.045 seconds