[go: up one dir, main page]

login
Search: a193764 -id:a193764
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sufficient number of monominoes to exclude X-pentominoes from an n X n board.
+10
10
1, 2, 3, 4, 7, 10, 12, 16, 20, 24, 29, 35, 40, 47, 53, 60, 68, 76, 84, 92, 101, 111, 121, 131, 141, 152, 164, 176, 188, 200, 213, 227, 241, 255, 269, 284, 300, 316, 332, 348, 365, 383, 401, 419, 437, 456, 476, 496, 516, 536, 557, 579, 601, 623, 645, 668, 692
OFFSET
3,2
COMMENTS
a(n+2) is also the domination number (size of minimum dominating set) in an n X n grid graph (Alanko et al.).
Apparently also the minimal number of X-polyominoes needed to cover an n X n board. - Rob Pratt, Jan 03 2008
LINKS
Samu Alanko, Simon Crevals, Anton Isopoussu, Patric R. J. Östergård, and Ville Pettersson, Computing the Domination Number of Grid Graphs, The Electronic Journal of Combinatorics, 18 (2011), #P141.
Daniel Gonçalves, Alexandre Pinlou, Michaël Rao, and Stéphan Thomassé, The Domination Number of Grids, SIAM Journal on Discrete Mathematics, 25 (2011), 1443.
Stephan Mertens, Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph, arXiv:2408.08053 [math.CO], 2024. See p. 15.
Eric Weisstein's World of Mathematics, Domination Number
Eric Weisstein's World of Mathematics, Grid Graph
FORMULA
a(n) = n^2 - A193764(n). - Colin Barker, Oct 05 2014
Empirical g.f.: -x^3*(x^19 -2*x^18 +x^17 -x^14 +2*x^13 -3*x^12 +2*x^11 +x^10 -2*x^9 +2*x^7 -x^6 -x^5 +2*x^4 +1) / ((x -1)^3*(x^4 +x^3 +x^2 +x +1)) - Colin Barker, Oct 05 2014
Empirical recurrence a(n) = 2*a(n-1)-a(n-2)+a(n-5)-2*a(n-6)+a(n-7) with a(3)=-3, a(4)=-1, a(5)=1, a(6)=3, a(7)=5, a(8)=8, a(9)=12 matches the sequence for 9 <= n <= 14 and 16 <= n <= 51. - Eric W. Weisstein, Jun 27 2017
a(n) = floor(n^2/5) - 4 for n > 15. (Conçalves et al.) - Stephan Mertens, Jan 24 2024
Empirical g.f. and recurrence confirmed by above formula. - Ray Chandler, Jan 25 2024
MATHEMATICA
Table[Piecewise[{{n - 2, n <= 6}, {7, n == 7}, {10, n == 8}, {40, n == 15}}, Floor[n^2/5] - 4], {n, 3, 51}] (* Eric W. Weisstein, Apr 12 2016 *)
LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 7, 10, 12, 16, 20, 24, 29, 35, 40, 47, 53, 60, 68, 76, 84, 92}, 60] (* Harvey P. Dale, Aug 30 2024 *)
CROSSREFS
Cf. A193764, A269706 (size of a minimum dominating set in an n X n X n grid).
KEYWORD
nonn,easy
AUTHOR
Toshitaka Suzuki, Apr 19 2005
EXTENSIONS
Extended to a(29) by Alanko et al.
More terms from Colin Barker, Oct 05 2014
STATUS
approved
The domination number of the 4 X n board.
+10
6
2, 3, 4, 4, 6, 7, 7, 8, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67
OFFSET
1,1
COMMENTS
The domination number of a rectangular grid is the minimal number of X-pentominoes or its fragments that can cover the board.
LINKS
Andrew Buchanan, Tanya Khovanova and Alex Ryba, Saturated Domino Coverings, arXiv:1112.2115 [math.CO], 2011.
M. S. Jacobson and L. F. Kinch, On the domination number of products of graphs:I, Ars Combinatoria, vol 18, 1983, 33-44.
FORMULA
a(n) = n, except for n = 1, 2, 3, 5, 6 or 9. For the exceptions a(n) = n+1.
a(n) = 4n - A193767(n).
a(n) = 2*a(n-1)-a(n-2) for n>11. - Colin Barker, Oct 05 2014
G.f.: x*(x^10-2*x^9+x^8+x^7-x^6-x^5+2*x^4-x^3-x+2) / (x-1)^2. - Colin Barker, Oct 05 2014
EXAMPLE
You can't cover the 1 by 4 board with an X-pentomino, but you can do it with two of them.
MATHEMATICA
LinearRecurrence[{2, -1}, {2, 3, 4, 4, 6, 7, 7, 8, 10, 10, 11}, 70] (* Harvey P. Dale, Feb 17 2020 *)
PROG
(PARI) Vec(x*(x^10-2*x^9+x^8+x^7-x^6-x^5+2*x^4-x^3-x+2)/(x-1)^2 + O(x^100)) \\ Colin Barker, Oct 05 2014
CROSSREFS
Row 4 of A350823.
KEYWORD
nonn,easy
AUTHOR
Andrew Buchanan, Tanya Khovanova, Alex Ryba, Aug 06 2011
STATUS
approved
The number of dominoes in a largest saturated domino covering of the 3 by n board.
+10
5
2, 4, 6, 8, 11, 13, 15, 17, 20, 22, 24, 26, 29, 31, 33, 35, 38, 40, 42, 44, 47, 49, 51, 53, 56, 58, 60, 62, 65, 67, 69, 71, 74, 76, 78, 80, 83, 85, 87, 89, 92, 94, 96, 98, 101, 103, 105, 107, 110, 112, 114, 116, 119, 121, 123, 125, 128, 130, 132, 134, 137
OFFSET
1,1
COMMENTS
A domino covering of a board is saturated if the removal of any domino leaves an uncovered cell.
LINKS
Andrew Buchanan, Tanya Khovanova and Alex Ryba, Saturated Domino Coverings, arXiv:1112.2115 [math.CO], 2011.
FORMULA
a(n) = 3*n - floor((3*n+4)/4) = 3*n - A077915(n).
G.f. x*(2+2*x+2*x^2+2*x^3+x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Aug 22 2011
EXAMPLE
If you completely cover a 3 by 1 board with 3 dominoes, you can always remove one and the board will still be covered. Hence a(2) < 3. On the other hand, you can cover the 2 by 2 board with 2 dominoes and a removal of one of them will leave one cell uncovered. Hence a(1) = 2.
MATHEMATICA
Table[3 n - Floor[(3 n + 4)/4], {n, 100}]
LinearRecurrence[{1, 0, 0, 1, -1}, {2, 4, 6, 8, 11}, 70] (* Harvey P. Dale, Dec 11 2015 *)
PROG
(PARI) a(n) = 3*n - (3*n+4)\4 \\ Charles R Greathouse IV, Jun 11 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Andrew Buchanan, Tanya Khovanova, Alex Ryba, Aug 06 2011
STATUS
approved
The number of dominoes in the largest saturated domino covering of the n X n board plus one (n >= 2).
+10
4
3, 7, 13, 19, 27, 38, 49, 62, 77, 93, 110, 130, 150, 173, 197, 222, 249, 278, 309, 341, 374, 409, 446, 485, 525, 566, 609, 654, 701, 749, 798, 849, 902, 957, 1013, 1070, 1129, 1190, 1253, 1317, 1382, 1449, 1518, 1589, 1661, 1734, 1809, 1886, 1965, 2045, 2126
OFFSET
2,1
COMMENTS
A domino covering of a board is saturated if the removal of any domino leaves an uncovered cell.
In a domino covering of an n X n board, a domino is redundant if its removal leaves a covering of the board. a(n) is the smallest size of board for which any domino covering must include a redundant domino.
LINKS
Andrew Buchanan, Tanya Khovanova and Alex Ryba, Saturated Domino Coverings, arXiv:1112.2115 [math.CO], 2011.
FORMULA
For n > 6, except n = 13, a(n) = n^2 + 5 - floor((n+2)^2/5).
a(n) = n^2 +1 - A104519(n).
Empirical g.f.: x^2*(x^18 -2*x^17 +x^16 -x^13 +2*x^12 -3*x^11 +2*x^10 +x^9 -2*x^8 +x^6 -2*x^4 -2*x^2 -x -3) / ((x -1)^3*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Oct 05 2014
Empirical g.f. confirmed with above formula and recurrence in A104519. - Ray Chandler, Jan 25 2024
EXAMPLE
If you completely cover a 2 X 2 board with 3 dominoes, you can remove one and the board will still be covered. Hence a(2) >= 3. On the other hand, you can tile the 2 by 2 board with 2 dominoes and a removal of one of them will leave both cells uncovered. Hence a(2) = 3.
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Buchanan, Tanya Khovanova, Alex Ryba, Aug 06 2011
STATUS
approved
The number of dominoes in a largest saturated domino covering of the 4 by n board.
+10
4
2, 5, 8, 12, 14, 17, 21, 24, 26, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177
OFFSET
1,1
COMMENTS
A domino covering of a board is saturated if the removal of any domino leaves an uncovered cell.
LINKS
Andrew Buchanan, Tanya Khovanova and Alex Ryba, Saturated Domino Coverings, arXiv:1112.2115 [math.CO], 2011
FORMULA
a(n) = 3n, except for n = 1, 2, 3, 5, 6 or 9. For the exceptions a(n) = 3n-1.
a(n) = 4n - A193768(n).
a(n) = 2*a(n-1)-a(n-2) for n>11. - Colin Barker, Oct 05 2014
G.f.: -x*(x^10-2*x^9+x^8+x^7-x^6-x^5+2*x^4-x^3-x-2) / (x-1)^2. - Colin Barker, Oct 05 2014
EXAMPLE
You have to have at least two dominoes to cover the 1 by 4 board, each covering the corner. After that anything else you can remove. Hence a(1) = 2.
PROG
(PARI) Vec(-x*(x^10-2*x^9+x^8+x^7-x^6-x^5+2*x^4-x^3-x-2)/(x-1)^2 + O(x^100)) \\ Colin Barker, Oct 05 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Andrew Buchanan, Tanya Khovanova, Alex Ryba, Aug 06 2011
STATUS
approved

Search completed in 0.006 seconds