# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a193767 Showing 1-1 of 1 %I A193767 #17 Jun 13 2015 00:53:56 %S A193767 2,5,8,12,14,17,21,24,26,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72, %T A193767 75,78,81,84,87,90,93,96,99,102,105,108,111,114,117,120,123,126,129, %U A193767 132,135,138,141,144,147,150,153,156,159,162,165,168,171,174,177 %N A193767 The number of dominoes in a largest saturated domino covering of the 4 by n board. %C A193767 A domino covering of a board is saturated if the removal of any domino leaves an uncovered cell. %H A193767 Andrew Buchanan, Tanya Khovanova and Alex Ryba, Saturated Domino Coverings, arXiv:1112.2115 [math.CO], 2011 %H A193767 Index entries for linear recurrences with constant coefficients, signature (2,-1). %F A193767 a(n) = 3n, except for n = 1, 2, 3, 5, 6 or 9. For the exceptions a(n) = 3n-1. %F A193767 a(n) = 4n - A193768(n). %F A193767 a(n) = 2*a(n-1)-a(n-2) for n>11. - _Colin Barker_, Oct 05 2014 %F A193767 G.f.: -x*(x^10-2*x^9+x^8+x^7-x^6-x^5+2*x^4-x^3-x-2) / (x-1)^2. - _Colin Barker_, Oct 05 2014 %e A193767 You have to have at least two dominoes to cover the 1 by 4 board, each covering the corner. After that anything else you can remove. Hence a(1) = 2. %o A193767 (PARI) Vec(-x*(x^10-2*x^9+x^8+x^7-x^6-x^5+2*x^4-x^3-x-2)/(x-1)^2 + O(x^100)) \\ _Colin Barker_, Oct 05 2014 %Y A193767 Cf. A193764, A193765, A193766, A193768. %K A193767 nonn,easy %O A193767 1,1 %A A193767 Andrew Buchanan, _Tanya Khovanova_, Alex Ryba, Aug 06 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE